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2

50 Abstract: 

51 The effective thermal conductivity of soil is important to geo-engineering applications, and it 
52 is controlled by factors across different length scales. Through a comprehensive review of these 
53 factors, we found that while other more traditional factors have been well studied, there is still 
54 a lack of characterisation of soil microscale and mesoscale structures and their influence on 
55 effective thermal conductivity. In addition, after reviewing the models available in the literature 
56 for soil effective thermal conductivity prediction, it was found that compared with empirical 
57 and theoretical models, machine learning models can account for the influence of multi-scale 
58 factors, however, research into them is scarce. To overcome the limitations of previous 
59 research, we proposed a framework that can investigate the factors influencing soil effective 
60 thermal conductivity at multiple scale. It includes the impact of soil structural factors at micro 
61 to mesoscale, and this impact is integrated with the influence from other factors for accurate 
62 thermal conductivity prediction.

63 Keywords
64 Soil thermal conductivity; Influencing factors; Prediction models; Soil fabric; Microstructures
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65 1 Introduction
66 Heat transfer in geomaterials (soils and rocks) plays an essential role in the geotechnical and geology-
67 engineering applications that contribute to a sustainable development, for example, hydrocarbon 
68 exploration (Schimmel et al. 2019), geothermal energy utilisation (Brandl 2006; Jia et al. 2019), thermal 
69 energy storage (Bauer et al. 2013), and carbon dioxide sequestration (Fei et al. 2015). Therefore, a clear 
70 and updated understanding of the heat transfer behaviour in geomaterials is of utmost importance to 
71 improve the reliability and productivity of associated engineering projects.

72 Soil is usually regarded as granular and composite material, and it mainly consists of solid particles and 
73 voids. The solid particles are made up of minerals or organic matters; and the voids are usually filled 
74 with water or air. Similarly, rocks can be thought as (mildly to highly) cemented granular materials, 
75 this is particularly true for sedimentary rocks.  Consequently, there are three mechanisms driving heat 
76 transfer in soil: a) thermal conduction – heat is transferred from one solid particle to another if two 
77 particles contact each other (or through the solid cementation between them); b) thermal convection – 
78 the heat transference happens in the voids that contain water or air; and c) thermal radiation – heat 
79 transfer between different components and through electromagnetic waves at high temperature 
80 (Asakuma et al. 2014). Thermal conductivity ( ) is the property that indicates materials ability to 𝜆
81 transfer heat, and the  of different soil constituents varies. In particular, the  of solid particles is of 𝜆 𝜆
82 different magnitude compared with that of water or air in the voids (Yun and Santamarina 2008). For 
83 example,   3 W/(m∙K),  = 0.56 W/(m∙K),  = 0.026 W/(m∙K) at room temperature 𝜆𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑠 𝜆𝑤𝑎𝑡𝑒𝑟 𝜆𝑎𝑖𝑟

84 and atmospheric pressure. Considering the three heat transfer mechanisms in soil and the variation of  𝜆
85 between different components, the effective thermal conductivity  is adopted to indicate the overall 𝜆𝑒𝑓𝑓
86 heat transfer ability. Therefore, studying and predicting  is crucial in understanding soil heat transfer 𝜆𝑒𝑓𝑓
87 behaviour.

88 The soil  is controlled by soil structure, which can be quantified at different scales: macroscale, 𝜆𝑒𝑓𝑓
89 mesoscale, and microscale. Macroscale structures are derived from regarding different phases in soil as 
90 a corresponding whole unit, while ignoring, for example, the connection between solid particles and 
91 particles shape and size. For instance, porosity is a macroscale parameter, and it is defined as the ratio 
92 of the volume of voids to the total volume of soil. Porosity is mostly used to predict the  because it 𝜆𝑒𝑓𝑓
93 controls the contribution of different heat transfer mechanisms (e.g., heat conduction or heat convection) 
94 to overall  (Yun and Santamarina 2008; Côté and Konrad 2005; Rizvi et al. 2020c). A number of 𝜆𝑒𝑓𝑓
95 studies have investigated the soil  based on macroscale factors and corresponding models have been 𝜆𝑒𝑓𝑓
96 proposed to predict the  (Zhang et al. 2017; Zhang and Wang 2017). Mesoscale structures involve 𝜆𝑒𝑓𝑓
97 different particles in soil and characterise the connectivity between them and/or their interrelations with 
98 the pore space. For example, particle connectivity, defined by network features based on complex 
99 network theory (Fei et al. 2019b), indicates thermal conduction skeleton in soil. Microscale structures 

100 focus on individual particles. They include information about particle size and shape, which control 
101 inter-particle contact area and are defined through parameters like roundness and sphericity (Hryciw et 
102 al. 2016; Lee et al. 2017; Fei et al. 2019a). Therefore, investigating the effect of factors at different 
103 scales on  is the key to comprehensive understanding of soil heat transfer behaviour. Nevertheless, 𝜆𝑒𝑓𝑓
104 effects of multiscale (from micro to mesoscale) structural parameters on  have not been 𝜆𝑒𝑓𝑓
105 comprehensively reviewed and summarised. Furthermore, emerging models (e.g., machine learning 
106 models) for soil  prediction have not been included in the previous review papers.𝜆𝑒𝑓𝑓

107 This article first reviews the relationship between soil  and various influencing factors at different 𝜆𝑒𝑓𝑓
108 scales with comprehensive supporting data from the literature. The factors that have not been fully 
109 researched yet are summarised. The soil  prediction models that involve different factors are 𝜆𝑒𝑓𝑓
110 assessed and their potential limitations are identified. To conclude, a research framework is proposed 
111 and demonstrated for investigating soil  through factors at multiple scales.𝜆𝑒𝑓𝑓
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112 2 Influencing factors of effective thermal conductivity
113 For comprehensive review of all influencing factors, a detailed category including non-redundant 
114 factors is required, particularly when considering soil structure at different scales. A comparison 
115 between the categories in literature and the category adopted in this study is given. Based on the 
116 proposed category, the influence of each factor on  is then analysed.𝜆𝑒𝑓𝑓

117 2.1 Categories of influencing factors
118 2.1.1 Categories of influencing factors in literature
119 The factors influencing soil  have been categorised differently in the various studies. Table 1 𝜆𝑒𝑓𝑓
120 summarises the methods in the literature to categorise those factors. The classification – compositional 
121 factors, environmental factors and other factors – was adopted in (Zhang and Wang 2017); however, 
122 this classification could be clearer if compositional factors are further divided into components and 
123 structures. Dong et al. (2015) divided the factors into soil constituent, soil type, water content and 
124 particle contact; but these categories were redundant, because soil constituent and soil type are 
125 correlated. Soil nature, soil structure and soil physical condition were three groups identified by Jin et 
126 al. (2017), whereas these groups were not independent either. Abu-Hamdeh (2003) broadly classified 
127 the factors influencing soil  into those inherent to soil itself and those can be managed or controlled; 𝜆𝑒𝑓𝑓
128 but this classification is too general to arrange all the specific influencing factors.

129 2.1.2 Categories of influencing factors in this study
130 To address the limitations of previous research in categorising the factors influencing soil  (Zhang 𝜆𝑒𝑓𝑓
131 and Wang 2017; Dong et al. 2015; Jin et al. 2017; Abu-Hamdeh 2003), this study classify those factors 
132 into three types: components properties, structures and environmental conditions, as presented at the 
133 bottom of Table 1. The “components properties” consist of the thermal conductivity of the solid material 
134 and that of the void typically filled with air or water. The “structures” are considered at three scale 
135 levels: macro-level, meso-level and micro-level. Macroscale factors describe the material as a whole, 
136 for example, porosity is regarded as a structural factor at macro-level. Mesoscale factors involve two or 
137 more particles, for example, particle connectivity belongs to the meso-level. The microscale structural 
138 factors, which are based on individual particles, comprise particle shape, particle size and interparticle 
139 contact area. In addition, environmental conditions are composed of temperature, density, pressure, and 
140 moisture content – these are all macroscale factors as well.
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141 Table 1 Categories of the factors influencing soil effective thermal conductivity

References Categories Factors Limitations
Compositions Mineral components; 

gradation; particle size 
and shape; 
interparticle physical 
contact, e.g., the 
number of contact 
points; change of soil 
structure during drying 
and wetting cycle; 

Environmental conditions Water content and 
movement; density;
temperature;

Zhang and 
Wang (2017)

Other Properties of soil;
ions, salts and 
additives; hysteresis

Particle connectivity 
and particle contact 
area are not arranged 
properly

Constituent Particle thermal 
conductivity; 
mineralogy

Soil type Mineral; gradation; 
particle size and shape

Water content

Dong et al. 
(2015)

Particle contact Coordination number

The categories are 
correlated: the soil 
constituent differences 
are due mainly to 
different soil type

Soil nature Texture; mineralogy; 
particle shape and size

Structural condition Porosity; particle 
arrangement

Jin et al. (2017)

Physical condition Water content; 
temperature; pressure

The categories are not 
independent: soil 
particle size and shape 
are classified into soil 
nature, but they impact 
the soil structures

Factors inherent to soil itself Mineralogy; 
composition;

Abu-Hamdeh 
(2003)

Factors manageable Water content; 
density; porosity

The categories are too 
general to arrange all 
specific influencing 
factors

Components properties Particle / air / water 
thermal conductivity; 
materials’ elastic 
stiffness
Macro-level: porosity
Meso-level: particle 
connectivity, e.g., 
coordination number, 
quantified soil 
skeleton (Fei and 
Narsilio 2020) 

Structures

Micro-level: particle 
size, particle shape, 
particle contact area

This study

Environmental conditions Temperature; pressure; 
moisture content

142 2.2 Soil components properties influencing the effective thermal conductivity
143 Heat conduction within particles is an important heat transfer process in geomaterials. Therefore, 
144 particle thermal conductivity ( ) influences the soil effective thermal conductivity ( ) 𝜆𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝜆𝑒𝑓𝑓
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6

145 (Tarnawski et al. 2009). In general, high soil   could be resulted from high  (Côté and Konrad 𝜆𝑒𝑓𝑓 𝜆𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
146 2005; Zhang et al. 2015b; He et al. 2020). The  is determined by the minerals that compose 𝜆𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
147 particles, and it ranges from 1.8 to 8.8 W/(m∙K) (He et al. 2020). Johansen (1977) summarised the 
148 thermal conductivity of the minerals at common ambient temperatures around 25 ℃, which shows 
149 quartz has the highest thermal conductivity around 7.7 W/(m∙K), while mica and feldspar have the 
150 lowest values, both of which are around 2 W/(m∙K). Other minerals, e.g., pyroxene, amphibole, olivine, 
151 and chlorite, possess a thermal conductivity ranging from 2 to 5.8 W/(m∙K). Consequently, geomaterials 
152 and soils that mainly consist of quartz show a higher  than those composed of other minerals. There 𝜆𝑒𝑓𝑓
153 are many models considering  for  prediction: series and parallel models by Wiener (1912), 𝜆𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝜆𝑒𝑓𝑓
154 uniform model by De Vries and Van Wijk (1963), geo-mean model by Johansen (1977) and Hashin and 
155 Shtrikman boundary model (Hashin and Shtrikman 1962; Yun and Santamarina 2008). While ignoring 
156 the influence of particle connection and contact on , they could be used to show the relationship 𝜆𝑒𝑓𝑓
157 between  and  to some extent. The equation based on geo-mean model (Johansen 1977) is 𝜆𝑒𝑓𝑓 𝜆𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
158 selected for the showcase considering the available data from He et al. (2020).

159

160 where  is the particle thermal conductivity;  is the water thermal conductivity;  is the 𝜆𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝜆𝑤𝑎𝑡𝑒𝑟 𝜆𝑎𝑖𝑟

161 air thermal conductivity;  is porosity defined as the ratio of void volume  and total volume ; 𝑛 𝑉𝑣𝑜𝑖𝑑 𝑉𝑡𝑜𝑡𝑎𝑙

162 and  is degree of saturation (the ratio of water volume to void volume). Measured thermal conductivity 𝑆
163 data from Birch and Clark (1940) shows that  prediction error using this model is within 20% 𝜆𝑒𝑓𝑓
164 (Johansen 1977). Figure 1 exemplifies the influence of  on soil  in dry conditions, assuming 𝜆𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝜆𝑒𝑓𝑓
165  = 0.026 W/(m∙K). The figure shows the  affects  to a larger extent in soil with low 𝜆𝑎𝑖𝑟 𝜆𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝜆𝑒𝑓𝑓
166 porosity than in soil with relatively high porosity. 

167

168 Figure 1 Influence of solid particle thermal conductivity  on soil effective thermal conductivity  under 𝜆𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝜆𝑒𝑓𝑓
169 different porosity based on data from He et al. (2020)

170 In addition to the solid particle thermal conductivity, elastic stiffness is another component property 
171 that affect the effective thermal conductivity (Morimoto et al. 2022). Morimoto et al. (2022) 
172 investigated the relationship between the thermal conductivity and granular materials’ Young’s 
173 modulus via the combination of DEM-generated granular samples and corresponding heat pipe network 

𝜆𝑒𝑓𝑓 = 𝜆1 ― 𝑛
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝜆𝑆 × 𝑛

𝑤𝑎𝑡𝑒𝑟𝜆(1 ― 𝑆) × 𝑛
𝑎𝑖𝑟 (1)

𝑛 =
𝑉𝑣𝑜𝑖𝑑

𝑉𝑡𝑜𝑡𝑎𝑙
(2)
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174 model. According to their findings, soil effective thermal conductivity may increase with its Young’s 
175 modulus.

176 2.3 Soil structures influencing the effective thermal conductivity
177 2.3.1 Structural feature at macroscale
178 Porosity  is one of soil properties at macro-level and it refers to the fraction of pore volume of 𝑛 𝑉𝑣𝑜𝑖𝑑 
179 total volume  as defined in Eq. (2) above. It is commonly used to describe the macro-structure of 𝑉𝑡𝑜𝑡𝑎𝑙
180 granular and sandy soils (Ding et al. 2023) and selected as a key/sole structural feature when 
181 establishing predictive models of thermal conductivity (Johansen 1977; Côté and Konrad 2005; Tong 
182 et al. 2009; Rizvi et al. 2020a). The void usually contains water and air. Since the values of particle 
183 thermal conductivity ( ), water thermal conductivity ( ) and air thermal conductivity ( ) 𝜆𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝜆𝑤𝑎𝑡𝑒𝑟 𝜆𝑎𝑖𝑟
184 have different magnitudes and they together determine the soil effective thermal conductivity ( ) to 𝜆𝑒𝑓𝑓

185 some extent, the porosity  influences the soil  remarkably .𝑛 𝜆𝑒𝑓𝑓

186 Porosity is a result of soil texture and particle distribution. Sandy soil has a porosity range from 0.35 to 
187 0.5, while finer soil porosity typically ranges from 0.4 to 0.6. Compacted soil possesses a porosity as 
188 low as 0.25 to 0.3 (Carter and Gregorich 2007). Overall, soil  decreases with the increase of porosity 𝜆𝑒𝑓𝑓
189 (Côté and Konrad 2005). Figure 2(a) shows the change of dry soil  with porosity. The included data 𝜆𝑒𝑓𝑓
190 are collected from Slusarchuk and Watson (1975); Johansen (1977); Côté and Konrad (2005); Yun and 
191 Santamarina (2008); Narsilio et al. (2010); Fei et al. (2019b). Soil  in dry conditions ranges from 𝜆𝑒𝑓𝑓
192 about 0.15 to 0.45 W/(m∙K) while the porosity changes from about 0.25 to 0.55. Furthermore, Côté and 
193 Konrad (2005) claimed that dry soil  is directly related to porosity and they proposed the following 𝜆𝑒𝑓𝑓
194 exponential relationship between the two parameters:

195 where  is the effective thermal conductivity of dry soil;  and  are coefficients related to soil 𝜆𝑒𝑓𝑓, 𝑑𝑟𝑦 𝜒 𝜂
196 particle shape. They applied the equation to various soils:  and  are 0.75 W/(m∙K) and 1.2 for natural 𝜒 𝜂
197 mineral sands, 1.7 W/(m∙K) and 1.8 for crushed rocks, 0.3 W/(m∙K) and 0.87 for organic fibrous soil. 
198 Figure 2(b) shows the change of unsaturated and saturated soil  with porosity. The experimental 𝜆𝑒𝑓𝑓
199 data for quartzite and granite are from Côté and Konrad (2005). It indicates that the porosity affects 
200  to a larger extent with high degree of saturation, , than low degree of saturation.𝜆𝑒𝑓𝑓 𝑆

𝜆𝑒𝑓𝑓, 𝑑𝑟𝑦 = 𝜒 ⋅ 10 ―𝜂𝑛 (3)
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201

202 Figure 2 The distribution of soil effective thermal conductivity  with porosity: (a) dry soils with data from 𝜆𝑒𝑓𝑓
203 Slusarchuk and Watson (1975); Johansen (1977); Côté and Konrad (2005); Yun and Santamarina (2008); 
204 Narsilio et al. (2010); Fei et al. (2019b);  and  are 0.75 W/(m∙K) and 1.2 for generating Eq. (3); ,  𝜒 𝜂 𝜆𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝜆𝑎𝑖𝑟
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205 and   are 2 W/(m∙K), 0.026 W/(m∙K) and 0 for generating Eq. (1); (b) unsaturated / saturated soils predicted 𝑆
206 values using Eq. (1) with =5 W/(m∙K), =0.56 W/(m∙K), =0.026 W/(m∙K); quartzite and granite 𝜆𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝜆𝑤𝑎𝑡𝑒𝑟 𝜆𝑎𝑖𝑟
207 experimental data is from Côté and Konrad (2005)

208 2.3.2 Structural features at mesoscale
209 Particle connectivity indicates soil skeleton and thus relates to the pathways of heat conduction between 
210 particles. Since heat conduction between particles dominates the heat transfer processes in soil, particle 
211 connectivity is important to soil effective thermal conductivity  (Dong et al. 2015). However, the 𝜆𝑒𝑓𝑓
212 indices of soil particle connectivity have not been well studied. Cheng et al. (1999) described the particle 
213 connectivity based on the results measured by Finney (1970), but only mono-sized spheres were 
214 considered. Particle connectivity could also be obtained if employing Discrete Element Modelling 
215 (DEM) for granular assemblies, since the contact between discrete particles and packing characteristics 
216 of granular systems can be found within DEM. Although research has been conducted on heat transfer 
217 using DEM, those work mainly focused on the computation of effective thermal conductivity and 
218 structural characterisation was out of their scope (Vargas and McCarthy 2001; Feng et al. 2009). 
219 Structural parameters such as packing fraction and macroscopic stress has been investigated by Peeketi 
220 et al. (2019) but further quantification of particle connectivity change due to altered packing and stress 
221 conditions is still missing. Many other studies used coordination number derived from DEM-generated 
222 granular assembly to investigate thermal conductivities (Yun and Evans 2010; El Shamy et al. 2013). 
223 Nonetheless, traditional coordination number alone cannot capture all information of complex granular 
224 materials’ structure. For example, traditional coordination number only considers the number of 
225 contacts between particles but ignores the contact quality, which determine the thermal resistance 
226 between particles. Further description and quantification of particle connectivity cannot be achieved 
227 without other theories and tools.

228 Fei and Narsilio (2020); Fei et al. (2020) used complex network theory to characterise soil particle 
229 connectivity based on X-ray computed tomography (CT) images. To use complex network theory to 
230 characterise soil particle connectivity, a network representing soil particles has to be built first based on 
231 real soil CT images. This network’s format is similar to that studied in (Feng et al. 2009; Yun and Evans 
232 2010; El Shamy et al. 2013; Morimoto et al. 2022): soil is represented as a web composed of nodes and 
233 edges; the nodes represent individual particles, and edges exist between contacted particles. Then, the 
234 complex network theory can be applied to the built network to extract structural features. These 
235 structural features provide more comprehensive indices for particle connectivity and soil structure 
236 quantification, and these indices are classified into four types: centrality, network scale, cycles and 
237 clustering, as listed in Table 2. These different types describe structures of a soil particle assembly via 
238 different aspects (Newman 2003). The “centrality” type quantifies the importance of nodes (particles) 
239 within a network (granular assembly) based on their position or the number of paths passing through 
240 them. For example, the degree of a node in a network is the number of edges linked to this node, which 
241 is equivalent to coordination number in soil mechanics and powder technology. Closeness centrality of 
242 a node measures the how closely this node is related to other nodes, as exemplified in Figure 3 and 
243 detailed in Table 2. Betweenness centrality measures how often a node appears on the shortest path 
244 between two other nodes. The “network scale” measures the network size and interactions between 
245 nodes encompassed in a network. For example, network diameter is equal to the length of the longest 
246 one among the shortest paths between any two nodes in a network, as illustrated in Figure 3. The “cycle” 
247 type indicates the loop starting and ending at the same node and thus 3-cycles represent triangles. The 
248 “clustering” type measures the tendency of nodes to form tightly-knit groups or communities within a 
249 larger network as detailed in Table 2 and Figure 3.

250 Furthermore, weighted networks are established by adding contact area or thermal conductance as the 
251 weight to network edges, resulting in new weighted sub-indices under each type. In an unweighted 
252 network, an edge only indicates two nodes are connected. Even though the edges in Figure 3 have 
253 different lengths, the lengths have not been considered as weight for the edges. For network representing 
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254 granular soils, if the contact area between two particles in physical contact is used to weight the edge 
255 between two nodes that represent those two particles in a network, the length of this edge has a physical 
256 meaning of the contact area. This process of adding weights to edges in a network bring physical 
257 meanings to the network features, and consequently the network features account for not only the 
258 number of particles contacts but also the contact quality. The influence from contact area / thermal 
259 conductance-weighted network features on heat transfer is also included in Table 2. 

260 In general, soil  correlates directly proportional to the degree (also known as coordination number 𝜆𝑒𝑓𝑓
261 in soil mechanics and powder technology). For closeness centrality, soil  is related to the weighted 𝜆𝑒𝑓𝑓
262 value directly proportional while the unweighted value inversely proportional. Besides, soil  𝜆𝑒𝑓𝑓
263 decreases with the increase of the betweenness centrality. In terms of network scale indices, soil  is 𝜆𝑒𝑓𝑓
264 inversely correlated to the average weighted shortest path. As for cycles and clustering,  increases 𝜆𝑒𝑓𝑓
265 with the number of 3-cycle in a network. Particularly, the weighted degree and weighted closeness 
266 centrality are identified as the best predictors for soil  (Fei and Narsilio 2020). A quantitative 𝜆𝑒𝑓𝑓
267 relationship between soil  and network features is given below (Fei et al. 2020) :𝜆𝑒𝑓𝑓

268 where  is the solid particle thermal conductivity;  is the degree weighted by the contact area 𝜆𝑠𝑜𝑙𝑖𝑑 [𝐺𝐶]𝜅𝑤

269 between particles. Figure 4 illustrates the influence of weighted degree on soil  for different sands 𝜆𝑒𝑓𝑓
270 with data from Fei et al. (2021). The complex network methodology for soil structure quantification has 
271 not been extended to unsaturated soil, where water fills voids and bridges particles, and hence updated 
272 networks need to be proposed for studying heat transfer in unsaturated soil.

𝜆𝑒𝑓𝑓

𝜆𝑠𝑜𝑙𝑖𝑑
= ―0.21([𝐺𝐶]𝜅𝑤

)2 + 0.67[𝐺𝐶]𝜅𝑤
+ 0.25 (4)
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273 Table 2 Indices of soil particle connectivity at mesoscale based complex network theory and their relationship with soil effective thermal conductivity  (Fei and Narsilio 𝜆𝑒𝑓𝑓
274 2020; Fei et al. 2020)

Type Sub-indices Description Correlation with 𝝀𝒆𝒇𝒇
Degree* The number of edges linked to a node Directly proportional
Closeness centrality* Related to distance of a node to other nodes and defined as

;[𝐺]𝐶(𝑖) = 𝛽[∑|𝑉| ― 1
𝑗 = 1 𝑑(𝑖,𝑗)] ―1

 is closeness centrality of node ;[𝐺]𝐶(𝑖) 𝑖
 is a normalisation term; 𝛽
 is a node-set including  and ;𝑉 𝑖 𝑗

 is the shortest path length from  to .𝑑(𝑖,𝑗) 𝑖 𝑗

Directly proportional for weighted values but
inversely proportional for unweighted values

Betweenness centrality* Related to the extent that a node or edge connects other 
nodes or edges:

; [𝐺]𝐵(𝑖) = 𝛽∑
𝑗,𝑘 ∈ 𝑉

𝜎(𝑗, 𝑘|𝑖)
𝜎(𝑗, 𝑘)

 is betweenness centrality of node ;[𝐺]𝐵(𝑖) 𝑖
 is a normalisation term;𝛽

 is the number of ;𝜎(𝑗, 𝑘) 𝑑(𝑗,𝑘)
 is number of  passing the node .𝜎(𝑗, 𝑘|𝑖) 𝑑(𝑗,𝑘) 𝑖

Inversely proportional

Centrality

Eigenvector centrality* The contribution of a node to network connectivity
Network diameter The longest one among the shortest length paths:

;[𝐺]𝐷 = 𝑀𝑎𝑥𝑖,𝑗𝜖𝑉[𝑑(𝑖,𝑗)]
 is network diameter;[𝐺]𝐷

 is the node set included in the network;𝑉
 is the shortest path length from node  to node .𝑑(𝑖,𝑗) 𝑖 𝑗

Average shortest path length* The average of the shortest length paths from every node to 
other nodes.

Inversely proportional

Network 
scale

Network density The ratio of actual edge number to potential edge number
Cycles Number of 3-cycle Number of loops in a network that starts and ends at the 

same node and has 3 edges
Directly proportional

Clustering Global clustering coefficient Indicating how integrated or fractured the network is:
 ,𝐺𝐺𝐶 = 3

𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠′𝑛𝑢𝑚𝑏𝑒𝑟
𝑐𝑜𝑛𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑠′𝑛𝑢𝑚𝑏𝑒𝑟
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Type Sub-indices Description Correlation with 𝝀𝒆𝒇𝒇
 is the global clustering coefficient;𝐺𝐺𝐶

a ‘triangle’ is a three nodes-set connected by three edges;
a ‘triple’ is a three nodes-set connected by three / two edges .

Local clustering coefficient* ,[𝐺]𝐿𝐶(𝑖) =
2𝑇(𝑖)

𝜅(𝑖)[𝜅(𝑖) ― 1]
 is the local clustering coefficient of node ;[𝐺]𝐿𝐶(𝑖) 𝑖

 is the number of triangles passing node ;𝑇(𝑖) 𝑖
 is the degree of node .𝜅(𝑖) 𝑖

275 * For the sub-indices calculated based on individual node or edge, the average value is adopted. The asterisk * indicates an average value.
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276

277 Figure 3 Network features illustration based on complex network theory from (Fei and Narsilio 2020) 

278

279 Figure 4 Influence of contact area-weighted degree in complex network theory on soil effective thermal 
280 conductivity  in with data from  Fei et al. (2021)𝜆𝑒𝑓𝑓
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281 2.3.3 Structural features at microscale
282 Soil particle shape and size control the contact area between particles, and the contact area governs the 
283 heat conduction process in soil. Since heat conduction between particles dominates the heat transfer 
284 processes in soil, particle shape and size are the key factors that influence soil effective thermal 
285 conductivity  (Gan et al. 2017; Lee et al. 2017; Fei et al. 2019a). Many studies adopt coefficients 𝜆𝑒𝑓𝑓
286 rather than particle shape and size descriptors themselves to consider the effect (De Vries 1963; Côté 
287 and Konrad 2005), where a quantitative relationship between  and particle shape and size is missing. 𝜆𝑒𝑓𝑓
288 To quantify the particle size and shape influence, this section firstly reviews the methods for particle 
289 size and shape description. 

290 Two-dimensional microscopic images-based descriptors for particle shape, such as circularity, 
291 sphericity, roundness, etc., have been introduced in Cherkasova and Shan (2008); Cox and Budhu 
292 (2008); Lee et al. (2017) and (Xiao et al. 2020); however, they have some limitations when 
293 characterising irregular particles in natural soil, because the derived descriptor values may vary with 
294 the directions of projections (Fei et al. 2019a). Three-dimensional sphericity is introduced and used in 
295 Wadell (1932); Hamilton and Crosser (1962); Verma et al. (1991). Sphericity in these studies is defined 
296 as . Nevertheless, elongated particles cannot be well described using 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑣𝑜𝑙𝑢𝑚𝑒 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑠𝑝ℎ𝑒𝑟𝑒
𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

297 this definition. Lees (1964) described the angularity of particles using three main features: number of 
298 corners, corners degree of projection, and corners degree of acuteness. Zhou et al. (2018) combined 
299 roundness and sphericity to describe real sand particles with different shapes. Volume-based aspects 
300 ratio was found to have a positive correlation to thermal conductivity of silver nanofluids 
301 (Mirmohammadi et al. 2019). More recent works use sphericity in Eq. (5) and roundness in Eq. (6) for 
302 particle shape representation (Fei et al. 2019a). These two descriptors can be computed using CT images 
303 of real soil particles.

304 where  is particle volume and  is particle surface area in Eq. (5);  is the radius of the th particle 𝑉 𝑆𝐴 𝑟𝑖 𝑖
305 corner,  is the number of particle corners and  is radius of the maximum inscribed sphere in Eq. 𝑁 𝑟max, 𝑖𝑛
306 (6). Figure 5 shows the soil  change with different particle shape. In general, soil composed of 𝜆𝑒𝑓𝑓
307 spherical and round particles has a higher  than that composed of elongated and angular particles.𝜆𝑒𝑓𝑓

308

𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =
36𝜋𝑉2

(𝑆𝐴)3 (5)

𝑅𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 =
∑

𝑟𝑖

𝑁
𝑟max , 𝑖𝑛

(6)
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309 Figure 5 Influence of particle shape on soil effective thermal conductivity  (a) shape defined by surface areas 𝜆𝑒𝑓𝑓
310 with dry glass experimental data from Verma et al. (1991);  is around 1 ,  is around 𝜆𝑠𝑜𝑙𝑖𝑑 𝑊/(𝑚 ∙ 𝐾) 𝜆𝑎𝑖𝑟
311 ; (b) shape defined by  Eq. (5) and Eq. (6) with data from Fei et al. (2019a); 0.025 𝑊/(𝑚 ∙ 𝐾) 𝜆𝑠𝑜𝑙𝑖𝑑
312 , , = 3 𝑊/(𝑚 ∙ 𝐾) 𝜆𝑎𝑖𝑟 = 0.025 𝑊/(𝑚 ∙ 𝐾) 𝜆𝑤𝑎𝑡𝑒𝑟 = 0.591 𝑊/(𝑚 ∙ 𝐾)

313 Parameters including 1) the fraction of relatively large particles in soil assembly and 2) particle mean 
314 or median diameters are usually used to study the influence of particle size on soil . In most cases, 𝜆𝑒𝑓𝑓
315 soil with a larger particle size shows a higher   than that with smaller particle size (Zhang et al. 𝜆𝑒𝑓𝑓
316 2015a; Gan et al. 2017).  Gan et al. (2017) argued that small particle size leads to less particle contact 
317 area, and thus reduces the heat conduction between particles and lowers effective thermal conductivity 
318 in dry condition. It should be noted that, however, for unsaturated soil, small particle size leads to high 
319 soil  (Zhang et al. 2015b). This is because small particle size results in large surface area, and thus 𝜆𝑒𝑓𝑓
320 water films and bridges are easily formed between particles, thereby reducing thermal resistance 
321 considering that water has a greater ability for heat transfer than air. Furthermore, compared with the 
322  of soil with low particle thermal conductivity, the  of soil with high particle thermal 𝜆𝑒𝑓𝑓 𝜆𝑒𝑓𝑓
323 conductivity is more easily influenced by particle size (Zhou et al. 2010; Gan et al. 2017). Figure 6 
324 presents general relationship between soil  and particle size. Mean particle diameters are used by 𝜆𝑒𝑓𝑓
325 Midttomme and Roaldset (1998), where particles are derived from synthetic samples with relatively 
326 uniform particle size. Median particle diameters are used by Fei et al. (2021), Lee et al. (2017) and Chen 
327 (2008), where diameters are from sieve analysis. The  relates more closely with mean diameters 𝜆𝑒𝑓𝑓
328 than median diameters.

329  

330

331 Figure 6 Influence of particle size on soil effective thermal conductivity  with data from Midttomme and 𝜆𝑒𝑓𝑓
332 Roaldset (1998); Chen (2008); Lee et al. (2017); Fei et al. (2021)
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333 2.4 Environmental conditions influencing the effective thermal conductivity
334 2.4.1 Soil water content
335 The pores around solid particles in soil are typically filled with either air or water. Since water can 
336 reduce the thermal resistance between particles remarkably (Rao and Singh 1999), the water content, 
337 or more precisely the degree of saturation  (the ratio of water volume to voids volume) and volumetric 𝑆
338 moisture content  (the ratio of water volume to soil volume) are considered as the prominent factors 𝜃
339 that affect soil effective thermal conductivity  (Zhang and Wang 2017; Agrawal et al. 2019; Lu and 𝜆𝑒𝑓𝑓
340 Dong 2015). Some studies report gravimetric moisture content w (the ratio of water mass to soil mass) 
341 rather than  and . In general, soil  under unsaturated or fully saturated conditions is higher than 𝑆 𝜃 𝜆𝑒𝑓𝑓
342 that under dry conditions (Johansen 1977; Chen 2008). Moreover, the soil  grows more rapidly at 𝜆𝑒𝑓𝑓

343 low  or  compared with that at high  or  (Zhang et al. 2015b; Dong et al. 2015). At low  or , 𝑆 𝜃 𝑆 𝜃 𝑆 𝜃
344 solid particle connections are established gradually by water bridges formed in the voids. Considering 
345 thermal conductivity of water is greater than of air, these connections facilitate heat conduction in soil 
346 thereby increasing the soil . In contrast, at high  or  moisture content, solid particles are almost 𝜆𝑒𝑓𝑓 𝑆 𝜃
347 fully connected by water bridges so the soil  grows slightly. Moreover, the influence of water 𝜆𝑒𝑓𝑓

348 bridges depends on the void volume. Considering w is not as related to the void volume as  and ,   𝑆 𝜃 𝑆
349 and  could be indicators that truly and generally influence . Lu and Dong (2015) further introduced 𝜃 𝜆𝑒𝑓𝑓
350  and , at which the rate of change in thermal conductivity reaches maximum, for predicting soil 𝑆𝑓 𝜃𝑓

351 . Figure 7 shows the relationship between soil  and  with predicted values from De Vries 𝜆𝑒𝑓𝑓 𝜆𝑒𝑓𝑓 𝑆
352 (1963), Johansen (1977), Côté and Konrad (2005), Lu et al. (2007), Chen (2008), and experimental data 
353 from Zhang et al. (2015b).

354  

355 Figure 7 Influence of degree of saturation on soil effective thermal conductivity  with data from De Vries 𝜆𝑒𝑓𝑓
356 (1963); Johansen (1977); Côté and Konrad (2005); Lu et al. (2007); Chen (2008); Zhang et al. (2015b)

357 2.4.2 Soil temperature
358 Soil temperature influences the thermal conductivity of soil components, i.e., soil particles, air and 
359 water (Kayaci and Demir 2018). Besides, temperature can result in components phase change in soil 
360 and thus change the soil effective thermal conductivity (Gori and Corasaniti 2002). For example, under 
361 temperature below freezing point, part of fluid water in soil changes into solid ice, whose thermal 
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362 conductivity is different from that of fluid water. The effects of temperature ranging from 30 ℃ to 90 ℃ 
363 are reviewed here. This temperature range is mostly encountered in shallow geothermal engineering, 
364 disposal of radioactive waste and thermal remediation of contaminated soils. In general, soil  rises 𝜆𝑒𝑓𝑓

365 with temperature, and its value at 90 ℃ is three to five times of that at ambient temperature (Campbell 
366 et al. 1994). This is attributed to latent heat transfer, caused by evaporation of water in soil voids, under 
367 high temperature and pressures different from atmospheric pressure (Liu et al. 2011). Furthermore, soil 
368  increases more noticeably with temperature above 50 ℃ compared with that ranging from 30 to 50 𝜆𝑒𝑓𝑓

369 ℃ (Smits et al. 2013), and temperature effect is negligible below 30 ℃ (Lu and Ren 2009). Besides, the 
370 impact of temperature on  is greater in moist soil than in dry soil, and it is most obvious when the 𝜆𝑒𝑓𝑓
371 soil degree of saturation is between 22% to 50% (Sepaskhah and Boersma 1979). Figure 8 visualizes 
372 the influence of temperature on soil  under different volumetric water content.𝜆𝑒𝑓𝑓

373  

374

375 Figure 8 Influence of temperature on soil effective thermal conductivity  with experimental data selected from 𝜆𝑒𝑓𝑓
376 (a) quincy sand at different volumetric water content (Campbell et al. 1994) and (b) clay loam at different 
377 volumetric water content (Hiraiwa and Kasubuchi 2000)

378 2.4.3 Soil loading and gradation
379 Soil loading refers to the external forces acting on the soil beside self-weight. Soil loading induces 
380 compression thus increases the particle contact area between particles, as well as reducing porosity. 
381 Therefore, increasing loading increases the heat conduction process in soil and influences the soil 
382 effective thermal conductivity . The  variation should also be attributed to the stress 𝜆𝑒𝑓𝑓 𝜆𝑒𝑓𝑓
383 heterogeneity resulted from soil loading (Vargas and McCarthy 2001). Besides, soil structure (e.g., 
384 porosity, density, and particle connectivity) changes under loading, and consequently the soil  𝜆𝑒𝑓𝑓
385 changes. In general, soil  is positively correlated to soil loading, and it almost increases linearly 𝜆𝑒𝑓𝑓
386 with the loadings (Vargas and McCarthy 2001; Weidenfeld et al. 2004). Weidenfeld et al. (2004) studied 
387 the effective thermal conductivity of particle beds composed of glass/limestone/aluminium etc. and 
388 found that  rises with different materials to different extents under compression. This finding should 𝜆𝑒𝑓𝑓
389 also be applied to soil considering the similarity between the particle beds and soil packings. Moreover, 
390 the influence of soil loading on  is negligible when the particle thermal conductivity is as low as 𝜆𝑒𝑓𝑓
391 less than 1 W/(m∙K) (Weidenfeld et al. 2004). Compared with soil with small particle size, the  of 𝜆𝑒𝑓𝑓
392 that with large particle size is more easily influenced by the loading (Weidenfeld et al. 2004). 
393 Furthermore, the dependence of soil  on loading increases with the irregularity of particles because 𝜆𝑒𝑓𝑓
394 irregularity leads to more sensitive granular skeleton (Yun and Santamarina 2008). Cui et al. (2023) 
395 conducted a series of thermal test for soil specimens under loading-unloading conditions and at various 
396 degree of saturated. It was found that the change of thermal conductivity with loading-induced stress is 
397 more obvious under unsaturated condition compared with that under dry conditions. This effect is 
398 because that the addition of water improves soil suction and thus lowers soil compressibility. The 
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399 influence of stress on   also depends on soil initial compression state: more loose soil tends to be 𝜆𝑒𝑓𝑓
400 more easily affected by stress. In addition, Xiao et al. (2018) studied the dependence of thermal 
401 conductivity on soil gradation, and it was found that thermal conductivity increases with soil uniformity 
402 coefficient.

403 3 Models for effective thermal conductivity prediction
404 After reviewing the influence of various factors on soil effective thermal conductivity , models 𝜆𝑒𝑓𝑓
405 integrating those factors for  prediction are summarised in this section. Models for  prediction 𝜆𝑒𝑓𝑓 𝜆𝑒𝑓𝑓
406 are mainly classified into three types: theoretical models, empirical models, and machine learning 
407 models. 

408 Theoretical models are based on conceptual material geometry, and these models assume that different 
409 components in soil, i.e., solid, air, and water, are uniformly distributed. Then, the mathematical 
410 expressions for  are developed (Wiener 1912; De Vries and Van Wijk 1963; Gori 1983; Tong et al. 𝜆𝑒𝑓𝑓
411 2009; Haigh 2012; Johansen 1977). Empirical models are proposed through comparing measured  𝜆𝑒𝑓𝑓
412 with the value of different influencing factors (e.g., particle thermal conductivity, porosity, moist 
413 content). From this comparison, the key empirical coefficients that reveal the relationship between  𝜆𝑒𝑓𝑓
414 and various factors can be drawn (Kersten 1949; Johansen 1977; Donazzi et al. 1979; Rao and Singh 
415 1999; Balland and Arp 2005; Côté and Konrad 2005; Lu et al. 2007; Chen 2008). Machine learning 
416 models are based on trustable data and a learning process, which involve mathematic algorithms to 
417 establish the relationship between inputs (influencing factors) and outputs ( ) (Grabarczyk and 𝜆𝑒𝑓𝑓
418 Furmański 2013; Li et al. 2022a). Table 3 summarises the considered factors and features of each model.

419 3.1 Theoretical models
420 Wiener (1912) defined the lowest and highest value of  by assuming that different phases in soil are 𝜆𝑒𝑓𝑓
421 ideally distributed. De Vries and Van Wijk (1963) model is a more complex one compared with Wiener 
422 model. It accounts for particle shape effect on  but the related coefficient is not easy to obtain. 𝜆𝑒𝑓𝑓
423 Johansen (1977) proposed a “geo-mean” model with a succinct mathematical expression. Gori (1983) 
424 model focuses on the  under different water distribution regimes and it is complicated to implement. 𝜆𝑒𝑓𝑓
425 Tong et al. (2009) model was developed from Wiener model. It is a comprehensive one because the 
426 effects of pore structure, degree of saturation and temperature are considered. Haigh (2012) model 
427 considers water film development (i.e., its width and thickness) when predicting .𝜆𝑒𝑓𝑓

428 3.2 Empirical models
429 The  of soil with different temperatures, degree of saturation and mineral was measured by Kersten 𝜆𝑒𝑓𝑓
430 (1949), and he proposed two prediction equations for silts (or clay) and sandy soil respectively. In 
431 addition to the “geo-mean” model, Johansen (1977) also proposed “normalized thermal conductivity 
432 , which is expressed as: 𝜆𝑟"

433 where  is thermal conductivity under dry conditions, and  is that under saturated conditions. 𝜆𝑑𝑟𝑦 𝜆𝑠𝑎𝑡

434 Johansen developed several relationships between  and degree of saturation . And  can be used to 𝜆𝑟 𝑆 𝜆𝑟
435 estimate  by interpolating  and . This dimensionless coefficient has already involved many 𝜆𝑒𝑓𝑓 𝜆𝑠𝑎𝑡 𝜆𝑑𝑟𝑦
436 factors (e.g., soil type, minerology) and thus simplifies the prediction and widens the application range 
437 compared with the Kersten (1949) model. Balland and Arp (2005) model has an emphasis on the effect 
438 of organic matters on . Côté and Konrad (2005) updated the -  relationship by considering soil 𝜆𝑒𝑓𝑓 𝜆𝑟 𝑆
439 type effect. Lu et al. (2007) claimed a linear correlation between  and porosity for dry soil. Chen 𝜆𝑒𝑓𝑓

𝜆𝑟 =
𝜆𝑒𝑓𝑓 ― 𝜆𝑑𝑟𝑦

𝜆𝑠𝑎𝑡 ― 𝜆𝑑𝑟𝑦
(7)

Page 18 of 37Canadian Geotechnical Journal (Author Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. G
eo

te
ch

. J
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

U
N

IV
E

R
SI

T
Y

 O
F 

M
E

L
B

O
U

R
N

E
 o

n 
04

/0
8/

24
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



19

440 (2008) model has a good accuracy when predicting  of soil with high quartz contents. Other 𝜆𝑒𝑓𝑓
441 empirical models include Donazzi et al. (1979) model and Rao and Singh (1999) model.

442 3.3 Machine learning models
443 Machine learning models for  prediction are developed based on a large amount of trustable data 𝜆𝑒𝑓𝑓
444 regarding influencing factors and  (Wei et al. 2018). Typically, their architecture includes three 𝜆𝑒𝑓𝑓
445 layers: the input layer for influencing factors, the hidden layers for applying weights to the inputs, as 
446 well as the output layers for . They can provide fast and convenient predictions when validated by 𝜆𝑒𝑓𝑓
447 trustable data. 

448 Wei et al. (2018) used three methods: convolutional neural network (CNN), gaussian process regression 
449 (GPR) and support vector regression (SVR), to train available data and develop machine learning 
450 models. This work proves that machine learning models can provide accurate prediction. SVR and GPR 
451 are machine learning methods for non-linear regression analysis; and estimating porous media  from 𝜆𝑒𝑓𝑓
452 various factors is a non-linear problem. CNN has been widely applied in face recognition and thus it is 
453 able to capture the structure information in  prediction. Furthermore, six machine learning 𝜆𝑒𝑓𝑓
454 algorithms for soil  prediction are investigated in Li et al. (2022b). These algorithms include SVR, 𝜆𝑒𝑓𝑓
455 GPR, adaptive boosting method (AdaBoost), random forest (RF), decision tree (DT), and multivariance 
456 linear regression (MLR). The results show that AdaBoost provides good estimated values with the 
457 lowest error. Seven algorithms, including GPR, RF, DT, MLR, gradient boosting decision tree (GBDT), 
458 k-nearest neighbours (KNN), artificial neural network (ANN) were compared by Zhao et al. (2022) 
459 using different databases from Li et al. (2022b). These studies conclude that GPR, DT, and MLR are 
460 not the preferred algorithms for soil  prediction. Moreover, ANN was recommended by Zhao et al. 𝜆𝑒𝑓𝑓
461 (2022). A screen ANN is used to offset the influence of soil database insufficiency, and it utilises back-
462 propagation algorithm in the training stage (Zhang et al. 2020). In addition, in order to balance the 
463 complexity with the accuracy of the prediction model, this study compares the model performances 
464 under different combinations of inputs. Rizvi et al. (2020a) developed an ANN model for unsaturated 
465 soil  prediction. Different parameters, including porosity, degree of saturation and quartz content, 𝜆𝑒𝑓𝑓
466 are used as inputs for the model; and the back-propagation algorithm is adopted for calculating the 
467 weight values in the ANN hidden layer. The same author also used a ANN based on group method of 
468 data handling (GMDH) to predict sand  (Rizvi et al. 2020b). Multilayer perceptron ANN is 𝜆𝑒𝑓𝑓
469 considered as the optimal one for the prediction of sandstone  (Vaferi et al. 2014). Mesoscale and 𝜆𝑒𝑓𝑓
470 microscale structures were firstly integrated into the inputs of ANN models in Fei et al. (2021). Inputs 
471 in his model consist of particle thermal conductivity, porosity, coordination number, particle roundness 
472 and sphericity. In general, machine learning models are able to account for more factors and can be 
473 applied to a wide range.
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474 Table 3 Summary of prediction models for soil effective thermal conductivity 𝜆𝑒𝑓𝑓

Factors involved in each model
 thermal conductivity, 𝜆,

W/(m∙K)
 volume fraction𝜙,  porosity𝑛,  saturation degree𝑆,

 dry density,𝜌,
kg/m3

 gravimetric moisture𝑤,  temperature,𝑇,
℃

 coefficient𝐶,
Model 
category Author Expression Comments

𝜆𝑠𝑜𝑙𝑖𝑑 𝜆𝑤𝑎𝑡𝑒𝑟 𝜆𝑎𝑖𝑟 𝜙𝑠𝑜𝑙𝑖𝑑 𝜙𝑤𝑎𝑡𝑒𝑟 𝜙𝑎𝑖𝑟 𝑛 𝑆 𝜌 𝑤 𝑇 𝐶

Wiener 
(1912)

 𝜆𝑒𝑓𝑓, 𝑙𝑜𝑤𝑒𝑟 = [∑𝜙𝛼

𝜆𝛼] ―1

 𝜆𝑒𝑓𝑓, 𝑢𝑝𝑝𝑒𝑟 = ∑𝜙𝛼𝜆𝛼
 indicates different 𝛼

phase

Determining the 
upper and lower 
boundary of 

.𝜆𝑒𝑓𝑓

     

De Vries 
and Van 
Wijk 
(1963)

𝜆𝑒𝑓𝑓 =
∑𝐾𝛼𝜙𝛼𝜆𝛼

∑𝐾𝛼𝜙𝛼
 is the ratio of 𝐾𝛼

average thermal 
gradient of each 
constituent to that of 
continuous medium in 
soils

 is related to 𝐾𝛼
particle shape, 
and position, 
and it is difficult 
to be 
determined.

      

Johansen 
(1977)

 𝜆𝑒𝑓𝑓 =
 𝜆1 ― 𝑛

𝑠𝑜𝑙𝑖𝑑𝜆𝑆
𝑤𝑎𝑡𝑒𝑟𝜆(1 ― 𝑆)𝑛

𝑎𝑖𝑟

Developed from 
Wiener model 
(1912).

    

Theoretical 
models

Gori (1983)

Recommend referring 
to the literature. This 
model considers:
1) soil absorbed water 
content,
2) soil permanent 
wilting point,
3) soil field capacity.

Uncertainties 
exist in 
parameters used 
in this model.
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Factors involved in each model
 thermal conductivity, 𝜆,

W/(m∙K)
 volume fraction𝜙,  porosity𝑛,  saturation degree𝑆,

 dry density,𝜌,
kg/m3

 gravimetric moisture𝑤,  temperature,𝑇,
℃

 coefficient𝐶,
Model 
category Author Expression Comments

𝜆𝑠𝑜𝑙𝑖𝑑 𝜆𝑤𝑎𝑡𝑒𝑟 𝜆𝑎𝑖𝑟 𝜙𝑠𝑜𝑙𝑖𝑑 𝜙𝑤𝑎𝑡𝑒𝑟 𝜙𝑎𝑖𝑟 𝑛 𝑆 𝜌 𝑤 𝑇 𝐶

Tong et al. 
(2009)

 𝜆𝑒𝑓𝑓 =
𝜂1(1 ― 𝑛)𝜆𝑠𝑜𝑙𝑖𝑑 +
(1 ― 𝜂2)
[1 ― 𝜂1(1 ― 𝑛)]2

[(1 ― 𝑛)(1 ― 𝜂1)
𝜆𝑠𝑜𝑙𝑖𝑑

+
𝑛𝑆

𝜆𝑤𝑎𝑡𝑒𝑟
+

𝑛(1 ― 𝑆)
𝜆𝑎𝑖𝑟 ] ―1

+ 𝜂2
 [(1 ― 𝑛)(1 ― 𝜂1)𝜆𝑠𝑜𝑙𝑖𝑑 + 𝑛𝑆𝜆𝑤𝑎𝑡𝑒𝑟 + 𝑛(1 ― 𝑆)𝜆𝑎𝑖𝑟]

Coefficients 𝜂1, 
 relates to pore 𝜂2

structure, 
saturation 
degree and 
temperature, 
which are 
difficult to be 
determined.

      

Haigh 
(2012)

Recommend referring 
to the literature.
1) Based on 2D soil 

contact cell unit,
2) Water film 

formation is 
considered,

3) Applicable for 
 0.33.𝑛 >

Involved 
coefficients are 
related to the 
thickness of 
water film,  and 𝑆
the width of 
water film, 
resulting in 
inconvenient 
implementation.

    

Empirical 
models

Kersten 
(1949)

𝜆𝑒𝑓𝑓 = 0.144[0.9
, log 𝑤 ―0.2]101.6𝜌

for silts or clay
𝜆𝑒𝑓𝑓 = 0.144[0.7

, log 𝑤 +0.4] × 101.6𝜌

for sandy soils

The applicable 
range of  is 𝑤
limited.
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Factors involved in each model
 thermal conductivity, 𝜆,

W/(m∙K)
 volume fraction𝜙,  porosity𝑛,  saturation degree𝑆,

 dry density,𝜌,
kg/m3

 gravimetric moisture𝑤,  temperature,𝑇,
℃

 coefficient𝐶,
Model 
category Author Expression Comments

𝜆𝑠𝑜𝑙𝑖𝑑 𝜆𝑤𝑎𝑡𝑒𝑟 𝜆𝑎𝑖𝑟 𝜙𝑠𝑜𝑙𝑖𝑑 𝜙𝑤𝑎𝑡𝑒𝑟 𝜙𝑎𝑖𝑟 𝑛 𝑆 𝜌 𝑤 𝑇 𝐶

Johansen 
(1977)

 𝜆𝑒𝑓𝑓 =
𝜆𝑟(𝜆𝑠𝑎𝑡 ― 𝜆𝑑𝑟𝑦) +

 𝜆𝑑𝑟𝑦
 is the normalized 𝜆𝑟

thermal conductivity
 is the saturated 𝜆𝑠𝑎𝑡

thermal conductivity
 is the dry thermal 𝜆𝑑𝑟𝑦

conductivity

1) Proposing 
the concept 
of ,𝜆𝑟

2) Obtaining 
 by  𝜆𝑟 𝜆𝑟 ~ 𝑆

correlation,
3) Obtaining 

,  𝜆𝑑𝑟𝑦 𝜆𝑑𝑟𝑦
by his 
theoretical 
model.

    

Donazzi et 
al. (1979)

 𝜆𝑒𝑓𝑓 =
𝜆𝑛

𝑤𝑎𝑡𝑒𝑟𝜆1 ― 𝑛
𝑠𝑜𝑙𝑖𝑑

 exp [ ―3.08𝑛(1 ― 𝑆)2]

Easy to 
implement with 
no coefficients.

   

Rao and 
Singh 
(1999)

𝜆𝑒𝑓𝑓 = 101.6𝜌

 (1.07log 𝑤 + 𝑎)
 is the coefficient𝑎

The coefficient 
is related to soils 
type. And

 for 𝑤 ≥ 10%
clay and silts

 for 𝑤 ≥ 1%
sands.

  

Balland and 
Arp (2005)

Recommend referring 
to the literature.

Predicting  𝜆𝑒𝑓𝑓
through a 
proposed ~  𝜆𝑟 𝑆
relationship.
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Factors involved in each model
 thermal conductivity, 𝜆,

W/(m∙K)
 volume fraction𝜙,  porosity𝑛,  saturation degree𝑆,

 dry density,𝜌,
kg/m3

 gravimetric moisture𝑤,  temperature,𝑇,
℃

 coefficient𝐶,
Model 
category Author Expression Comments

𝜆𝑠𝑜𝑙𝑖𝑑 𝜆𝑤𝑎𝑡𝑒𝑟 𝜆𝑎𝑖𝑟 𝜙𝑠𝑜𝑙𝑖𝑑 𝜙𝑤𝑎𝑡𝑒𝑟 𝜙𝑎𝑖𝑟 𝑛 𝑆 𝜌 𝑤 𝑇 𝐶

Côté and 
Konrad 
(2005)

 𝜆𝑒𝑓𝑓 =
(𝜆𝑛

𝑤𝑎𝑡𝑒𝑟𝜆1 ― 𝑛
𝑠𝑜𝑙𝑖𝑑 ― 𝑎10 ―𝑏𝑛)

[ 𝑐𝑆
1 + (𝑐 ― 1)𝑆] + 𝑎

 10 ―𝑏𝑛

 are empirical 𝑎, 𝑏, 𝑐
coefficients

Developing 𝜆𝑟
 correlation ~𝑆

as
 .𝜆𝑟 =

𝑐𝑆
1 + (𝑐 ― 1)𝑆

    

Lu et al. 
(2007)

 𝜆𝑒𝑓𝑓 =
[𝜆𝑛

𝑤𝑎𝑡𝑒𝑟𝜆1 ― 𝑛
𝑠𝑜𝑙𝑖𝑑 ― (𝑏 ― 𝑎𝑛)]

×
exp [𝑐(1 ― 𝑆𝑐 ― 1.33)]

,  +(𝑏 ― 𝑎𝑛) 𝑎, 𝑏, 𝑐
are coefficients 

The coefficients 
are related to the 
dry soil thermal 
conductivity and 
soil type.

    

Chen 
(2008)

 𝜆𝑒𝑓𝑓 =
𝜆𝑛

𝑤𝑎𝑡𝑒𝑟𝜆1 ― 𝑛
𝑠𝑜𝑙𝑖𝑑

, [(1 ― 𝑎)𝑆 + 𝑎]𝑏𝑛

 are coefficients𝑎, 𝑏

This model has 
high accuracy 
for high quartz 
content soil. 
The coefficients 
are related to 
soil type.

    

Rizvi et al. 
(2020a) ANN algorithm Only for 

unsaturated soil.   

Machine 
learning 
models Zhang et al. 

(2020) ANN algorithm

Performances 
using different 
inputs are 
compared.
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Factors involved in each model
 thermal conductivity, 𝜆,

W/(m∙K)
 volume fraction𝜙,  porosity𝑛,  saturation degree𝑆,

 dry density,𝜌,
kg/m3

 gravimetric moisture𝑤,  temperature,𝑇,
℃

 coefficient𝐶,
Model 
category Author Expression Comments

𝜆𝑠𝑜𝑙𝑖𝑑 𝜆𝑤𝑎𝑡𝑒𝑟 𝜆𝑎𝑖𝑟 𝜙𝑠𝑜𝑙𝑖𝑑 𝜙𝑤𝑎𝑡𝑒𝑟 𝜙𝑎𝑖𝑟 𝑛 𝑆 𝜌 𝑤 𝑇 𝐶

Fei et al. 
(2021) ANN algorithm

Mesoscale and 
microscale 
structure factors 
are considered.

 

Li et al. 
(2022b)

Six algorithms 
performance are 
compared

Adaptive 
boosting 
methods are 
recommended

      

Zhao et al. 
(2022)

Seven algorithms 
performance are 
compared

Neural networks 
are 
recommended
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476 4 Research gaps and a methodological framework for futures studies
477 Based on the review regarding the factors influencing soil  and the models for the  prediction, 𝜆𝑒𝑓𝑓 𝜆𝑒𝑓𝑓
478 a holistic view of research gaps is given, followed by detailed explanations. Then, a methodological 
479 framework for future studies is proposed.

480 In addition to the intrinsic properties of soil, its structure is an underlying factor that influences thermal 
481 conductivity, as it determines the structure of heat transfer pathways. Other factors, such as water 
482 content and gradation, also affect thermal conductivity by creating new structures for heat transfer 
483 pathways. Previous research has investigated the impact of soil structure on thermal conductivity in dry 
484 conditions; however, in unsaturated conditions, the addition of water connects soil particles, resulting 
485 in a different soil structure. Lu and McCartney (2024) and Lu and Dong (2015) have linked the different 
486 mechanisms of water retention to thermal conductivity. However, the altered heat transfer pathways 
487 due to the addition of water, which are underlying reasons contributing to an increase in thermal 
488 conductivity, remain an unexplored area of research. Furthermore, existing research on soil thermal 
489 conductivity has effectively utilised complex network theory to quantify soil structure, establishing 
490 correlations between network-derived features and thermal conductivity in dry conditions. This 
491 innovative approach marks a significant advancement in understanding soil behaviour. However, 
492 complex network theory alone may not fully capture the soil structure under unsaturated conditions 
493 where the structure undergoes notable changes due to water addition. In this light, the potential of other 
494 structural quantification methods should be explored. The alternative methods discussed below offer 
495 diverse perspectives on soil structure quantification, yet their parameters have not been investigated in 
496 relation to soil thermal conductivity.

497 Euler number is a topological invariant, and it is expressed as (Herring 2012; Herring et al. 2013; 
498 Herring et al. 2019)

499 where  is the Euler number;  is the zeroth Betti number, representing the number of discrete elements 𝜒 𝛽0
500 in the volume;  is the first Betti number, indicating the number of redundant loops in the structure; 𝛽1
501 and  is the second Betti number, referring to the number of cavities. Herring et al. (2013) used it to 𝛽2
502 quantify the connectivity of nonwetting phase in porous media. However, the connectivity of soil pores 
503 that are based on Euler number has not been studied from the perspective of . In addition, statistical 𝜆𝑒𝑓𝑓
504 approaches are also favourable to the description of soil structures. Minkowski functions are geometric 
505 measurements that can quantify the soil structure statistically based on computed tomography images 
506 of soil (Vogel et al. 2010). Specifically, the zeroth Minkowski function indicates total mass of the 
507 studied object (pore or solid); the first Minkowski function represents the interfacial area between pore 
508 and solid; the second is the interface’s mean curvature; the third measures the total curvature (Vogel et 
509 al. 2010). The underlying theorem for using Minkowski functions to quantify the soil structure is 
510 proposed by Hadwiger (2013); he claimed that any properties, related only to the object’s form, can be 
511 expressed by a combination of Minkowski functions. However, the relationship between Minkowski 
512 functions and soil  has not been researched. Furthermore, the particle or pore connectivity does not 𝜆𝑒𝑓𝑓
513 consider the local geometries (e.g., shape and size) of individual particles or pores; similarly, the local 
514 geometries (e.g., shape and size) do not include global information (e.g., particle or pore connectivity). 
515 But the soil  depends on both the global and local geometries. Persistent homology analysis can 𝜆𝑒𝑓𝑓
516 measure the global and local characteristic simultaneously (Herring et al. 2019). Therefore, parameters 
517 derived from persistent homology analysis could contribute to the comprehensive understanding of soil 
518 the ; whereas they have not been studied from heat transfer aspect. A parameter describing the 𝜆𝑒𝑓𝑓
519 extent of the transition from disorder to order in a granular system is proposed by Dai et al. (2019), 
520 which could also be introduced to soil structures quantification.

𝜒 = 𝛽0 ― 𝛽1 + 𝛽2 (8)
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521 As previously pointed out, it is essential to quantify soil structure not only in dry conditions but also 
522 under unsaturated conditions to better understand the relationship between structural quantification and 
523 thermal conductivity. The goal of this endeavour is to include structural quantifications for thermal 
524 conductivity prediction. However, it is crucial to recognise that soil thermal conductivity is also 
525 influenced by other factors at various scales in addition to structural quantifications (Table 1). Therefore, 
526 a comprehensive framework that considers those additional factors presented in Table 1 is necessary 
527 for accurate prediction of thermal conductivity. Current models for predicting soil thermal conductivity 
528 fall short in this regard, as they do not fully account for all influencing factors, particularly the varied 
529 structure of unsaturated soils. The application of machine learning presents a promising avenue for 
530 developing a more integrative model (Fei et al. 2021). Current machine learning-based models in this 
531 field, however, have not yet fully incorporated soil structure data from both dry and unsaturated 
532 conditions as inputs. This limitation underscores the need for an updated machine learning framework 
533 that is designed to process and learn from a comprehensive set of inputs. By integrating detailed 
534 structural data from varying soil conditions along with other relevant factors at different scales, a 
535 framework is proposed in Figure 9, which could advance our capability to predict soil thermal 
536 conductivity with higher accuracy and relevance to real-world scenarios.

537

538 Figure 9 Framework of investigation on unsaturated soil effective thermal conductivity through multiscale 
539 characters; tools for each stage could be: 1) computed tomography imaging equipment; 2) software including 
540 ImageJ, Simpleware ScanIP; 3) network approaches or statistical methods; 4) finite element modelling and 
541 experimental measurements and 5) Python.

542 Firstly, modern computed tomography devices are employed to scan real soil samples (dry/unsaturated) 
543 and produce high resolution 3D image stacks. Afterwards, these images are used to reconstruct the 3D 
544 samples digitally by image process tools. The reconstructed 3D models serve as the foundation for both 
545 structural quantification and heat transfer processes modelling. The structural quantification relies on 
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546 network approaches or statistical methods. Meanwhile, Finite Element Modelling (FEM) is adopted to 
547 simulate heat transfer processes to compute , which will be further validated by measurements. 𝜆𝑒𝑓𝑓
548 Machine learning techniques are employed to discern the relationship between thermal conductivity 
549 and a combination of structural parameters and other traditional factors at multiple scales, including but 
550 not limited to solid particle thermal conductivity, porosity, and degree of saturation.

551 5 Conclusion
552 In this review, we systematically examined the various factors influencing soil thermal conductivity. 
553 Our findings highlight that soil structure impacts thermal conductivity significantly, but this area of 
554 research remains relatively unexplored due to the lack of characterising particle connectivity. A 
555 relationship between thermal conductivity and soil structure has been previously studied under dry 
556 conditions through the application of complex network theory for structural quantification. However, 
557 soil structure that undergoes notable changes due to the addition of water under unsaturated conditions 
558 has not been well characterised. Given the increased complexity of soil structure in unsaturated 
559 conditions compared to dry conditions, relying solely on complex network theory might be insufficient 
560 to capture the complete structural information. Consequently, we have explored other potential methods 
561 for a more comprehensive quantification of soil structure.

562 Furthermore, it is crucial to recognize that soil thermal conductivity is influenced not just by structural 
563 factors but also by a range of other variables. Our investigation reveals that current models for predicting 
564 soil thermal conductivity fall short of incorporating the full spectrum of influencing factors. To bridge 
565 this gap, we proposed a new integrative framework that considers both structural parameters and other 
566 relevant factors across different scales. This framework employs soil computed tomography (CT) 
567 images. These images offer a robust physical basis for an accurate description of soil structures based 
568 on quantification methods. Moreover, the framework integrates machine learning approaches, 
569 capitalising on their ability to assimilate a multitude of factors as inputs when predicting effective 
570 thermal conductivity. Machine learning's inherent strength in pattern recognition and data integration 
571 makes it particularly suited for this task. By combining the detailed structural data with other relevant 
572 factors, our framework aims to enhance the accuracy and applicability of predictive models, offering a 
573 more holistic understanding of soil thermal conductivity.
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