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Abstract  45 

Accurate and efficient prediction of thermal conductivity of sands is challenging due to the 46 

variations in particle size, shape, connectivity and mineral compositions, and external 47 

conditions. Artificial Neural Networks (ANN) models have been used to predict the effective 48 

thermal conductivity but they have not considered variables related to particle connectivity. 49 

This work uses computed tomography (CT) scanned images of four dry sands and network 50 

analysis to redress this significant shortcoming. Here sands are represented as networks of 51 

nodes (grains) and edges (interparticle contacts or/and small gaps between neighbouring 52 

particles) to extract network features that characterise interparticle connectivity. A network 53 

feature – weighted coordination number (WCN) capturing both particle connectivity and 54 

contact area – was found to be a good predictor of effective thermal conductivity in dry 55 

materials. Roundness, sphericity, solid particle thermal conductivity and porosity are other 56 

input parameters rigorously selected for an ANN model that predicts well the effective thermal 57 

conductivity of sands. 58 

Keywords: Machine learning; Heat transfer; Thermal network model; Microstructure; 59 

Micro-CT.  60 
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1 Introduction 61 

Granular materials are engaged in numerous applications such as geothermal engineering 62 

[1], petroleum and gas extraction [2], carbon dioxide geological storage [3] and pebble bed 63 

reactors [4]. In these projects, heat transfer is one of the processes that dominate project design 64 

and capital costs. As effective thermal conductivity (λeff) indicates the ease of heat transfer, its 65 

accurate and efficient prediction is essential. However, the prediction is challenging due to the 66 

complex microstructure of granular materials and external boundary conditions [5, 6]. The 67 

microstructure can be characterised at different scales, such as particle size, shape, gradation 68 

and minerality at the microscale (particle scale); particle connectivity [7, 8] at the mesoscale 69 

and porosity at the macroscale. Work by van Antwerpen et al. [9], Abdulagatova et al. [10] and 70 

Abyzov et al. [11] investigated a number of λeff models against experimental data and found 71 

some models simplify granular materials as packings of spheres, ellipsoids or parallel cylinders 72 

(regular geometrical forms), which limited their applicability to natural sands. Moreover, 73 

models characterise packing structure using porosity alone are insufficient [9] and 74 

microstructural parameters about grain-grain resistance [10] and contact area [11, 12] have not 75 

been incorporated in λeff models although they are important to λeff prediction [13]. In addition, 76 

particle connectivity, i.e., microstructural contact topology related to thermo-mechanical 77 

response [14], has rarely been quantified except for using coordination number which is 78 

defined as the number of neighbouring particles in contact with a given particle. 79 

Recently, researchers abstracted granular materials as contact networks and thermal 80 

networks by creating nodes for particles and edges for interparticle contacts (contact networks), 81 

and with the addition of near-contacts which represent the small gaps between neighbouring 82 

particles (thermal networks) [15]. Then based on complex network theory [16], contact area or 83 

thermal conductance can be added as a weight to each edge in the network to eventually identify 84 

a single mesoscale network feature which can characterise both the particle connectivity and 85 

contact quality. One such feature from the contact network is the weighted degree, which 86 

represents an enhanced version of a coordination number that accounts for the contact area of 87 

each interparticle contact. Hence, while coordination numbers only count the number of 88 

neighbouring particles of a target particle, the weighted coordination number (WCN) quantifies 89 

both the contact number (particle connectivity) and contact area (contact quality). The physical 90 

meaning of the WCN is the total contact area of a target particle to its neighbours. 91 

Numerical simulation methods such as finite element methods (FEM) [17], discrete element 92 

methods (DEM) [18] and lattice Boltzmann methods (LBM) [19] can be used to estimate λeff 93 
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with a more detailed complex microstructure involved in the process. However, these 94 

approaches require solving a system of partial differential equations and the computations are 95 

generally time-consuming [14, 20]. On the other hand, physical experiments such as thermal 96 

needle probe test are commonly undertaken to measure λeff [21], but one of the drawbacks is 97 

that accurate measurement needs relatively large undisturbed samples (150 mm long, 50 mm 98 

in diameter as a minimum) which may be difficult to obtain. The aim of this paper is to develop 99 

a model that can predict λeff accurately and computationally efficiently, even from very small 100 

samples. 101 

Machine learning techniques have enabled substantial advances in data-driven approaches 102 

throughout academia and industry. In the material sciences, materials informatics combine 103 

machine learning, Bayesian optimisation and Monte Carlo tree searches in an attempt to 104 

address the challenge of rapidly finding optimal materials [22]. A limited number of studies 105 

have also used machine learning to predict λeff of sphere packings [14, 23],  equation-based 106 

irregular materials [20] and sands [24]. The input parameters for the machine learning models 107 

in these works include porosity, particle size, component content, the thermal conductivity of 108 

solid and interstitial gas, temperature and loadings. Although these parameters are measurable 109 

in a laboratory [25, 26], bypassing a detailed understanding of structural arrangements and 110 

physical mechanisms may result in the differences observed between calculations and 111 

measurements [9, 13]. Hence, it is necessary to include particle connectivity parameters and 112 

the variables detailed above, in machine learning models that investigate heat transfer. 113 

This work intends to predict λeff accurately and efficiently by developing an ANN model 114 

using important and non-redundant inputs. Here we justify the selection of average WCN 115 

(WCNave) which quantifies the topological structure in sands and other microstructural 116 

variables including particle diameter, three-dimensional sphericity and roundness as input 117 

parameters in the ANN model. Computed tomography (CT) scanned images of four dry sands 118 

that varied in shape, size and endured external loads are used to calculate these parameters. A 119 

recently developed in-house thermal conductance model (TCNM) computed the λeff acting as 120 

the output parameter in the ANN model [27, 28] alongside complementary experimental 121 

measurements. TCNM mitigates the overestimation of λeff possibly induced by the particle 122 

volume effect [29] from threshold segmentation, and the variations of λeff estimation for 123 

different particle arrangements without additional disturbance of samples that result from 124 

insertion of thermal probes. 125 
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2 Artificial neural network models 126 

Artificial neural network (ANN) is at the core of deep Machine Learning (ML) techniques 127 

and has managed to render high accuracy in image classification (e.g., Google Images), voice 128 

recognition (e.g., Apple’s Siri) and learning (e.g., AlphaGo). The ANN was inspired by the 129 

architecture of the human brain and its architecture composites of an input layer, one or more 130 

hidden layers and an output layer. Each layer has one or more neurons (units/nodes), with the 131 

neurons in different layers connected by edges. As this work attempts to find an accurate and 132 

efficient model to predict λeff, the neurons in the input layer could be microstructural variables 133 

while the neuron in the output layer is λeff. Non-linear functions (activation functions) with 134 

weights that correspond to the neurons in the previous layer compute the neurons in the latter 135 

layer. This paper employs the ReLU activation function embedded in Python library 136 

TensorFlow and Keras for the hidden layers due to its high efficiency and general applicability 137 

[30]. In addition to the selection of a robust activation function, an appropriate optimiser can 138 

also adjust the weights and learning rates. This work uses Adam optimisation because it is an 139 

adaptive learning rate algorithm and has several advantages of other optimisation algorithms 140 

such as Momentum optimisation and RMSProp [30]. 141 

2.1 Input parameters determination 142 

Even though ANN performs well in solving complex problems, feeding input features 143 

without discretion is not recommended. Sometimes, a larger number of input features might 144 

lead to overfitting, making the trained model only fit specific data [31]. Hence, feature selection 145 

and reduction are usually conducted to find the most relevant and least redundant input features 146 

before training a machine learning model. This section presents a review of the heat transfer 147 

mechanisms and λeff models to justify the inputs selected in this work. 148 

Heat transfer in gas-stagnant granular materials occurs via four critical pathways: (1) heat 149 

conduction within solid particles; (2) heat conduction via interparticle contacts; (3) heat 150 

conduction via particle-gas-particle; (4) heat radiation across the solid surface and is negligible 151 

when the temperature is below 600° [10]. Since the thermal conductivity of the solid is two 152 

orders of magnitude larger than air and this work focuses on the samples at room temperature, 153 

heat travels via the first two mechanisms is known to be more significant for dry soils [32]. 154 

Therefore, the ANN model in this work incorporates parameters that relate to the particle and 155 

interparticle contacts. Particle diameter should be an input parameter since it relates to the 156 

distance that heat transfers within the particles, so is the solid thermal conductivity controlling 157 

the ease of heat transfer in the particle. In terms of a parameter related to interparticle contact, 158 
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the WCNave was identified as a good candidate [15] due to its capacity to capture both the 159 

existence of interparticle contacts but also the area of contact.  160 

Selection of optimal input parameters for the ANN model involved a critical analysis of the 161 

existing parameter used in λeff models. The majority of λeff models use porosity and the thermal 162 

conductivity of different phases [9-11]. Some complex λeff models in Table 1 also consider 163 

particle/pore shape which affects heat transfer [33] and mechanical behaviour [34] of granular 164 

materials. Eq. (1) introduces a parameter B to adjust the particle shape while Eq. (2) and Eq. 165 

(3) employ an aspect ratio to characterise the shape of the particle and/or pore. However, these 166 

are only applicable to particles with regular shapes.  167 

 168 

Table 1 Summary of effective thermal conductivity models that consider particle/pore shape 169 
Reference   

Zehner 
and 
Schlunder 
[35] 

𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒
𝜆𝜆𝑓𝑓

= 1 − �1 − 𝜙𝜙 + 2�1−𝜙𝜙
1−𝜉𝜉𝜉𝜉

 [ (1−𝜉𝜉)𝐵𝐵
(1−𝜉𝜉𝜉𝜉)2 ln � 1

𝜉𝜉𝜉𝜉
� − 𝐵𝐵+1

2
− 𝐵𝐵−1

1−𝜉𝜉𝜉𝜉
], 

𝜉𝜉 = 𝜆𝜆𝑓𝑓
𝜆𝜆𝑠𝑠

, 𝑟𝑟2 + 𝑧𝑧2

[𝐵𝐵−(𝐵𝐵−1)𝑧𝑧]2 = 1.  
r and z are the radii of the particle in two principal axes.  
B is the shape factor. The particle becomes the z-axis with no solid volume 
when 𝐵𝐵 → 0, a sphere when 𝐵𝐵 → 1 and a cylinder when 𝐵𝐵 → ∞. 
 

(1) 

Fricke 
[36] 

𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒
𝜆𝜆𝑠𝑠

= (1−𝜙𝜙)(1−𝜉𝜉)+𝜉𝜉𝜉𝜉𝜉𝜉
(1−𝜙𝜙)(1−𝜉𝜉)+𝛽𝛽𝛽𝛽

 , 𝜉𝜉 = 𝜆𝜆𝑓𝑓
𝜆𝜆𝑠𝑠

,  
𝛽𝛽 is related to 𝜉𝜉  and aspect ratio. 
 

(2) 

Keller et al. 
[37] 

𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 =  𝜆𝜆𝑠𝑠 �1 + 𝛼𝛼𝑝𝑝
𝛼𝛼𝑠𝑠
�𝑏𝑏
𝑎𝑎
�
2
�2 − 𝑏𝑏/𝑎𝑎

(1−𝑏𝑏/𝑎𝑎)2
��
−1

 , 𝜙𝜙 = 𝛼𝛼𝑝𝑝
𝛼𝛼𝑠𝑠
�𝑏𝑏
𝑎𝑎
�
2
�2 − 𝑏𝑏

𝑎𝑎
� , 

𝛼𝛼𝑝𝑝 is the aspect ratio of the pore 
𝛼𝛼𝑠𝑠 is the aspect ratio of solid (grain) 
b is the pore radius while a is the grain radius. 

(3) 

𝜆𝜆𝑠𝑠 is the thermal conductivity of solid and 𝜆𝜆𝑓𝑓 is the thermal conductivity of gas/fluid in the void space, 170 

𝜙𝜙 is porosity. 171 
 172 

Since aspect ratio cannot adequately cover the shape of all irregular particle/pores [33], three-173 

dimensional (3D) sphericity (S in Eq. (4)) and roundness (R in Eq. (5)) were used in this work 174 

to describe the particle shape, details of computational steps can be found in [33]: 175 

 𝑆𝑆 =  
36𝜋𝜋𝑉𝑉2

SA3  (4) 

 𝑅𝑅 =  
∑𝑟𝑟𝑖𝑖/𝑁𝑁
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−𝑖𝑖𝑖𝑖

 (5) 

where V is particle volume, SA is particle surface area, ri is the radius of each corner [33], N is 176 

the total number of corners and rmax-in is the radius of the largest sphere in the particle. 177 
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Selection of particle size, the thermal conductivity of solid and fluid/gas, WCNave, 3D 178 

sphericity and roundness, and porosity as sensible candidates for input parameters in the ANN 179 

model considered the analysis above.  180 

2.2 Performance indicator 181 

Data used for ANN modelling is typically divided into three sets: a training set, a validation 182 

set and a test set when embarking in supervised ML. The training set first trains the ML models 183 

which are evaluated to select the one that has the best performance on the validation set. The 184 

test set then evaluates the performance of the final model.  185 

Quantifications of the evaluations can use either the mean square error (MSE) or correlation 186 

coefficient (R2). MSE measures the standard deviation of the errors that a model makes in its 187 

predictions, with the preferred application [30] for regression problems. In contrast, R2 usually 188 

quantifies the linear correlation between the predicted value and actual value. It has a range 189 

from 0 to 1, where 0 signifies no relationship while 1 indicates a perfect fit. Accordingly, MSE 190 

was employed in this study to monitor the performance of the ANN model when tuning 191 

hyperparameters (e.g., the number of nodes in each layer) to select models with R2 used to 192 

present the general performance of the ANN model. 193 

3 Data collection 194 

3.1 Materials 195 

Four sands varying in particle shape were sent to the Australian Synchrotron, Imaging and 196 

Medical BeamLine (IMBL) for CT scanning at a pixel size of 13 𝜇𝜇𝜇𝜇 . Figure 1 shows a 197 

selection of the acquired images. Glass beads display the roundest particles while the particles 198 

in the Ottawa sand are more irregular but still have round corners. Compared to the particles in 199 

the Ottawa sand, particles in the angular sand are even more irregular and have sharp corners. 200 

Lastly, particles made from crushing schist have the most irregular shape, with half of these 201 

platy and elongated.  202 

 203 
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  204 
Fig. 1. Selected micro-CT slide images of four sands. Images show the variations in particle shape. 205 

 206 

Different particle sizes were chosen and axial loads were applied to sands in Fig. 1 using a 207 

rigid wall cell to further vary porosity and particle arrangement (Table 2). Hence, more data 208 

were obtained to train a universal ANN. Calculations of the equivalent particle size used CT 209 

images, consistent with previous research [27]. The samples shown in Fig. 1 correspond to GB-210 

L, OS, AS-L and CS-M without axial stress in Table 2 and have similar equivalent D50.  211 

 212 
Table 2 Particle size and axial compression stresses applied to each sample 213 

Sand Sample 
name 

Particle size 
(mm)a 

Particle size 
(mm)b 

Equivalent 
D50 (mm)b 

Axial Stress (MPa) 

Glass 
beads 

GB-S 
GB-N 
GB-L 

0.20-0.30 
0.50 
0.50-0.70 

0.12-0.37 
0.33-0.68 
0.40-0.80 

0.24 
0.54 
0.60 

0, 2.0, 6.1, 10.2 
0, 2.0, 6.1, 10.2 
0, 2.0, 6.1, 10.2, 20.4, 40.7 

Ottawa 
sand OS 0.60-0.85 0.58-0.94 0.76 0, 2.0, 6.1, 10.2, 20.4, 40.7 

Angular 
sand 

AS-P  
AS-M 
AS-L 

0.15-0.30 
0.43-0.60 
0.60-1.18 

0.12-0.41 
0.32-0.64 
0.39-0.99 

0.24 
0.48 
0.68 

0 
0, 2.0, 6.1, 10.2, 20.4, 40.7 
0, 2.0, 6.1, 10.2, 20.4, 40.7 

Crushed 
schist 

CS-S 
CS-M 

0.30-0.50 
0.50-1.18 

0.17-0.61 
0.23-0.95 

0.39 
0.58 

0, 2.0, 6.1, 10.2 
0 

a Particle size from sieve analysis 214 
b Particle size calculated based on CT reconstructed sample. 215 
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3.2 Microstructural variables 216 

This section briefly introduces the procedure used to obtain the aforementioned particle size, 217 

WCN, 3D sphericity, 3D roundness and porosity. 218 

3.2.1 Image processing 219 

The CT scanning resulted in sequential images with a pixel size of 13 𝜇𝜇𝜇𝜇. Selection of four 220 

regions of interest (ROI) with a dimension of 4.55 × 4.55 × 4.55 mm in each image stack 221 

eliminated the effect of potential heterogeneity. Fig. 2 (a) shows a cross-section of the ROI 222 

after applying a 3D median filter. Then a commonly used Otsu threshold segmentation 223 

algorithm [38] distinguished the solid phase (in black) and air phase (in white) as shown in Fig. 224 

2 (b). The adjacent particles in Fig. 2 (b) remain connected and required ‘splitting’ to achieve 225 

the properties (i.e., particle size, shape and WCN) of each particle using watershed 226 

segmentation. Meanwhile, each particle was assigned a unique identifier (ID) and rendered by 227 

random colour as shown in Fig. 2 (c). The Taubin smooth algorithm smoothed out each particle 228 

surface to compute particle volume, particle surface area, 3D sphericity and roundness 229 

following the steps detailed in a recent work [33]. Equivalent particle size calculations used 230 

the particle volume, with porosity computed using the volumes of all the particles and the 231 

known dimension of the ROI. 232 

 233 

 234 
Fig. 2. Overview of key steps in image processing to identify individual particles 235 

3.2.2 Weighted coordination number (WCN) 236 

Classical coordination number quantifies the contact number of a particle, a weighted 237 

coordination number (WCN) weights each interparticle contact by the contact area. Hence, 238 

WCN can capture both the existence of contacts and contact area. WCN is termed weighted 239 

degree in complex network theory [16] and can be computed after network constructions. For 240 

each sample in this work, a contact network was constructed by creating a node at the centroid 241 



Page 10 of 30 
 

of each particle and an edge for each interparticle contact, as shown in Fig. 3. To identify the 242 

interparticle contacts, boundary voxels were recognised first if the voxels in a particle are 243 

adjacent to anything else that was not in the same particle. The average coordinate of the 244 

boundary voxels can help to locate the centroid of each particle. Furthermore, if boundary 245 

voxels bordered on another particle, these were identified as interparticle contact voxels and 246 

further used to estimate the interparticle contact area.  247 

 248 

 249 
Fig. 3. Contact network construction for a sample (detailed from the dashed rectangle in Fig. 2 (c)) 250 
 251 
A simple way to calculate the interparticle contact area is to directly count the number of 252 

interparticle contact voxels but this may result in an overestimation after threshold 253 

segmentation due to partial volume effects [29]. Each pixel in the CT image shown in Fig. 4 254 

(a) has its own grayscale. Black and white voxels indicate solids and voids, whereas other 255 

voxels are “grey”. Some of these grey voxels at the 1-pixel gap between the two particles (Fig. 256 

4 (a)) are incorrectly identified as contacts, which will result in overestimations of both the 257 

contact area and λeff.  258 

 259 

 260 
Fig. 4. CT image of two spheres with a voxel gap. This image displays some partially filled voxels 261 

(a) incorrectly identified as contact areas after (b) threshold segmentation. 262 

 263 
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To correct the interparticle contact area, a penalty factor considering the grayscale of these 264 

partially filled voxels was introduced. The corrected interparticle contact area 𝐴𝐴𝐶𝐶  was 265 

computed as the sum of 𝐴𝐴(𝑖𝑖,𝑗𝑗,𝑘𝑘)
𝑣𝑣  weighed by the 𝜏𝜏th power of the ratio of grayscale values of 266 

individual interparticle voxels 𝑔𝑔(𝑖𝑖,𝑗𝑗,𝑘𝑘) to the maximum grayscale value among all interparticle 267 

voxels (Eq. (6)). The penalty factor 𝜏𝜏 was set at 10 after the calibration of the λeff of sphere 268 

packings with the result from a theoretical thermal network model [28, 39]: 269 

 𝐴𝐴𝐶𝐶 = �𝐴𝐴𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑣𝑣

𝑖𝑖,𝑗𝑗,𝑘𝑘

= ���
𝑔𝑔(𝑖𝑖,𝑗𝑗,𝑘𝑘)

max�𝑔𝑔(𝑖𝑖,𝑗𝑗,𝑘𝑘)�
�
𝜏𝜏

𝐿𝐿𝑣𝑣2�
𝑖𝑖,𝑗𝑗,𝑘𝑘

 (6) 

where 𝐿𝐿𝑣𝑣  is the length of a voxel, which is 13 𝜇𝜇𝜇𝜇 in this work. 270 

Once the contact network was constructed and interparticle contact area calculated, a 271 

computationally efficient Python library graph-tool [40] calculated the WCN (i.e., degree in 272 

the terminology of complex network theory with the addition of the interparticle contact area 273 

to each corresponding edge). The degree of a node is the total number of its attached edges, 274 

whereas the weighted degree of a node is equal to the sum of weights at the attached edges 275 

[16]. 276 

3.3 Effective thermal conductivity estimations 277 

3.3.1 Effective thermal conductivity from thermal conductance network model (TCNM) 278 

In order to calculate λeff, the contact network in Fig. 3 can be extended to a thermal network 279 

by considering the small gaps as near-contacts (i.e., the blue edges in Fig. 5), which correspond 280 

to particle-gas-particle heat conduction. A near-contact was identified if the distance between 281 

the boundary voxels of two adjacent particles was shorter than the average particle radius [27, 282 

28]. Then a TCNM model was generated by calculating the thermal conductance at three main 283 

heat transfer paths (i.e., through the particles, interparticle contacts and near-contacts), which 284 

is valid for dry granular materials at room temperature. 285 

 286 
Fig. 5. Thermal network construction. Red edges represent interparticle contacts while blue edges 287 

indicate near-contacts. An equivalent particle cylinder (dark green), an interparticle contact cylinder 288 
(orange) and a series of near-contact cylinders (light blue) are used to calculate thermal conductance 289 
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through the particle, interparticle contact and near-contact. The process is repeated for all particles 290 
within the granular material. 291 

 292 

Figure 5 presents three types of equivalent material cylinders that correspond to the three 293 

heat transfer mechanisms and are used to calculate the thermal conductance. The thermal 294 

conductance Ccy of a cylinder with a thermal conductivity 𝜆𝜆cy, cross-section area Acy and length 295 

Lcy is computed as Ccy = 𝜆𝜆cy Acy/Lcy. Hence, the thermal conductance CP through an equivalent 296 

particle cylinder (the dark green cylinder in Fig. 5) was calculated as the following: 297 

where 𝜆𝜆s is solid thermal conductivity, AP is the cross-section area of the green cylinder, VP is 298 

the particle volume, LP the distance from the particle centroid to the corresponding contact and 299 

CN is the coordination number of the target particle.  300 

Similarly, calculations of thermal conductance Ccontact  used Eq. (8) via an interparticle 301 

contact cylinder (orange cylinder in Fig. 5) with the corrected interparticle contact area AC 302 

obtained from Eq. (6). The length of the contact cylinder was defined as 3Lv (Lv is the pixel size 303 

or voxel length) as suggested by [41] which was a validation of [42]. A coefficient 𝜅𝜅 was also 304 

introduced in Eq. (8) to indicate the particle surface roughness since interparticle contact is a 305 

combination of point-to-point contacts in real due to the surfaces roughness but are not 306 

presented in CT images in Fig. 1 due to the physical limitation of the CT facility. 𝜅𝜅 was set as 307 

0.75 since Askari et al. [43] concluded that the overestimation of the interparticle contact area 308 

might be 25% if neglecting the effect of roughness. 309 

The thermal conductance Cgap through the near-contacts is the sum of the thermal 310 

conductance Cg (Eq. (9)) via each near-contact cylinder (light blue in Fig. 5). The cross-section 311 

area of the cylinder is the area of a pixel ((Lv)2) with the length of the cylinder computed during 312 

the identification process.  313 

The three conductance are combined to calculate the equivalent capacitance Cij between the 314 

centroid of particle i and j using Eq. (10). The Ccontact is zero when two adjacent particles that 315 

only have a near-contact (small gap). 316 

 𝐶𝐶𝑝𝑝 = 𝜆𝜆𝑠𝑠
𝐴𝐴𝑝𝑝

𝐿𝐿𝑝𝑝
= 𝜆𝜆𝑠𝑠

𝑉𝑉𝑃𝑃/𝐿𝐿𝑃𝑃/𝐶𝐶𝐶𝐶 
𝐿𝐿𝑃𝑃

 (7) 

 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜆𝜆𝑠𝑠
𝜅𝜅𝜅𝜅𝐶𝐶

3𝐿𝐿𝑣𝑣
 (8) 

 C𝑔𝑔𝑔𝑔𝑔𝑔 = �𝐶𝐶𝑙𝑙
𝑔𝑔

𝑙𝑙

= 𝜆𝜆𝜈𝜈(𝐿𝐿 𝑣𝑣)2�
1
𝐿𝐿𝑙𝑙
𝑔𝑔

𝑙𝑙

 (9) 
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The calculated Cij using Eq. (10) was imported to Eq. (11)( the Fourier’s law) to calculate 317 

heat flux Qij using an open-source Python library, OpenPNM [44] as a function of the 318 

temperature T in nodes i and j:  319 

The temperatures on the opposite sides of the sample (inlet and outlet) were prescribed as 320 

Tin = 293 K and Tout = 292 K to create a small thermal gradient, with other boundaries simulated 321 

as in thermally isolated conditions (or symmetrical, Qij = nil on these boundaries). The Qij, 322 

integrated on a cross-section perpendicular to the dominant heat transfer direction was selected 323 

to calculate the λeff of the sample as:  324 

where A is the area of a selected cross-section, L is the length of the simulated sample. 325 

Since the penalised interparticle contact area from Eq. (6) and a coefficient related to particle 326 

surface roughness were used in Eq. (8) to calculate the thermal conductance at interparticle 327 

contacts, TCNM has the merit of mitigating the overestimation of λeff caused by the partial 328 

volume effect and particle surface roughness. 329 

3.3.2 Effective thermal conductivity from physical testing 330 

The selected sand samples were also poured into PVC containers with a height of 120 mm 331 

and diameter of 50 mm using the same air-pluviation method to ensure consistency with the 332 

samples used in CT scanning. A thermal needle probe with a length of 100 mm and diameter 333 

of 2.4 mm was used to measure the λeff of each specimen following the ASTM standard D5334-334 

14 [21]. The PVC containers, whose size satisfy the requirement in ASTM standard, were also 335 

scanned to check density consistency with the smaller axially loaded micro-CT scanned 336 

samples. 337 

4 Results and discussion 338 

In this section, the TCNM is first validated for computing effective thermal conductivity λeff 339 

followed by a comprehensive discussion for selecting the important and non-redundant input 340 

parameters for the ANN models. Since WCNave is a newly introduced mesoscale parameter, 341 

 𝐶𝐶𝑖𝑖𝑖𝑖 = �
1
𝐶𝐶𝑖𝑖
𝑝𝑝 +

1
(𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐶𝐶𝑔𝑔𝑔𝑔𝑔𝑔) +

1
𝐶𝐶𝑗𝑗
𝑝𝑝�

−1

 (10) 

 �𝑄𝑄𝑖𝑖𝑖𝑖
𝑖𝑖→𝑗𝑗

= �𝐶𝐶𝑖𝑖𝑖𝑖(𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑗𝑗)
𝑖𝑖→𝑗𝑗

 (11) 

 𝐸𝐸𝐸𝐸𝐸𝐸 =  
1
𝐴𝐴∑𝑄𝑄𝑖𝑖𝑖𝑖  

(𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜)/𝐿𝐿
 (12) 
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the potential benefits of its inclusion in the prediction of λeff is investigated. Additionally, the 342 

relationships between WCNave/ WCN and traditional parameters are analysed for feature 343 

reduction. 344 

4.1 Effective thermal conductivity results and TCNM validation 345 

From the CT images of each sand under no load, four small cubic ROIs with an edge length 346 

of 4.55 mm were selected by cropping the CT images at different locations. The subsamples 347 

are used for λeff and porosity calculations in TCNM and comparisons with physical testing. 348 

Although the different grayscales in the CT images in Fig. 1 indicate minerals with different 349 

densities and thermal conductivities in the sands, a fixed thermal conductivity (3 W/(mK)) 350 

previously used in papers [39, 45] was assigned to solids to eliminate the effect of mineral 351 

composition, and isolate the effects of microstructures such as particle shape, connectivity and 352 

porosity. The thermal conductivity of air was set as 0.025 W/(mK). Figure 6 illustrates that the 353 

λeff from the TCNM have a similar decreasing trend to the experimental results. The λeff using 354 

the two methods are close for Ottawa sand (OS) while the λeff from TCNM is larger than 355 

measurements for angular sand (AS-L) and crushed schist (CS-M). The main reason is that the 356 

thermal conductivity of the solid phase in all samples are set same in TCNM simulation but 357 

different in reality.  358 

 359 

  360 
Fig. 6. The effective thermal conductivity computed from TCNM and validated by the experimental 361 

results of glass beads (GB-L), Ottawa sand (OS), angular sand (AS-L) and crushed schist sand (CS-M). 362 
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4.2 Effect of WCNave on effective thermal conductivity 363 

The thermo-mechanical behaviour of granular materials under loads not only relates to the 364 

bulk properties such as porosity but also microstructural contact variables [14] such as the 365 

WCNave. Therefore, the effect of WCNave on λeff should be investigated. For GB-L, OS and AS-366 

L under stress levels of 0, 2, 6.1 and 10.2 MPa, the average λeff of the four subsamples in each 367 

sand were calculated. Fig. 7 (a) shows that their average λeff has a directly proportional 368 

relationship with the WCNave, in contrast to the inverse proportionality with porosity (Fig. 7 369 

(b)). The data from GB-L and OS in Fig. 7 (a) align along an overall trendline while the data 370 

in Fig. 7 (b) cluster in three groups. Since particles in the three sands have distinct shapes, Fig. 371 

7 (a) and Fig. 7 (b) were extended to include an additional dimension, by considering the 372 

average of sphericity and roundness in the third axis. Planes were also fitted to the data with 373 

calculated R2 in the 3D graphs shown in Fig. 7. Fig. 7 (c) shows that the R2 is high at 0.98, 374 

which indicates that the microscale geometrical parameters together with mesoscale 375 

topographic and contact quality variable can predict λeff well. If the macroscale porosity 376 

replaces the mesoscale WCNave as shown in Fig. 7 (d), the R2 decreases to 0.88, which suggests 377 

that porosity alone cannot characterise the microstructure. This also highlights the importance 378 

of mesoscale connectivity parameters in studies of sand thermo-mechanical responses. 379 

 380 
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 381 

 382 
Fig. 7. The relationship between effective thermal conductivity and (a) WCNave, (b) porosity, (c) 383 

WCNave and particle shape, and (d) porosity and particle shape. (Click here to access the interactive 384 
graphs). 385 

4.3 Relationships between WCNave/ WCN and traditional parameters 386 

This section presents an analysis of why the WCNave can be an λeff predictor. From the 387 

perspective of complex network theory, the WCNave unifies the coordination number 388 

(connectivity) and contact area (as a weight in each edge of the network) as a single parameter. 389 

While the axial stress under zero lateral strain on samples is under 2 MPa, Fig. 8 shows that 390 

the slopes of the correlation between axial stress and λeff (Fig. 8 (a)) are similar to the slopes of 391 

the relationship between axial stress and contact area for three soils (Fig. 8 (c)). The WCNave 392 

also has similar corresponding increasing slopes (Fig. 8 (b)). Although the coordination number 393 

versus axial stress trends also increase, the gradients for OS and AS-L (for axial stress ≤ 2MPa) 394 

https://wenbinfei.github.io/research_demos/6-ANN/
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are different from the corresponding gradients observed in effective thermal conductivity 395 

versus axial stress. The contact area shows a stagnant increase as the axial stress increases 396 

beyond 2 MPa,  (Fig. 8 (c)) which is no longer the same as the gradients observed in the λeff 397 

plots (Fig. 8 (a)). However, coordination numbers and the WCNave can capture the increase of 398 

λeff when the axial stress is larger than 2 MPa. In other words, the WCNave can closely follow 399 

the increase of λeff over the whole range of axial stress since it captures the advantages of both 400 

contact area and coordination number at different stages of axial stress. Fig. 8 (b) also shows 401 

that the WCNave has a good relationship with axial stress for each sand and the value in 402 

spherical GB-L is always the highest, which indicates that stress may be redundant and may 403 

not be necessary for the ANN model to predict λeff if WCNave is used.  404 

 405 

 406 
Fig. 8. Variation of (a) effective thermal conductivity, (b) WCNave , (c) average intercontact area 407 

and (d) average coordination number with axial stress (and zero lateral strain). 408 

As one of the main heat transfer processes is through particles in dry granular materials, the 409 

particle diameter affects the heat transfer distance in the particle and the impact on WCN should 410 

be explored. For GB-L, OS and AS-L under no load, particles in the four ROIs of each sand 411 

(4,898 individual particles from 12 ROIs in total) were used to investigate the relationship 412 
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between the equivalent particle diameter and WCN. A clear and directly proportional 413 

relationship between particle equivalent diameter and WCN can be seen in Fig. 9 (a) for 414 

spherical GB-L, which is reasonable since a large particle has a higher opportunity to touch 415 

more particles and a larger total contact area once touching. The positive trend also exists in 416 

Fig. 9 (b) and Fig. 9 (c) for more irregular OS and AS-L sands even though there is a divergence 417 

in Fig. 9 (c). Therefore, the equivalent particle diameter is unnecessary to be involved in the 418 

ANN model on top of the WCN for λeff prediction due to their intercorrelation.  419 

 420 
Fig. 9. The dependence of WCN on equivalent particle diameter for three selected sands 421 

4.4 Effect of WCN on heat flux 422 

Since heat flux was used in Eq. (11) to compute λeff, the particles at the inlet and outlet of a 423 

subsample in each sand were used to study the relationship between WCN and heat flux. The 424 

heat flux from the centroid of a particle to the centroid of all its neighbours was calculated in 425 

the TCNM, showing positive correlations to WCN displayed in Fig 10. The clear relationship 426 

is because the WCN considers contact area which was used to calculate thermal conductance 427 

(Eq. (8)) and further served the computation of heat flux using the Fourier’s law. Similar to 428 

Figure 9, the correlation is clearest in the spherical GB-L and becomes weaker in more irregular 429 

sands.  430 

 431 
Fig. 10. The relationship between the total heat flux and WCN of particles at inlet and outlet in three 432 

selected sands 433 
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4.5 ANN model construction 434 

Only a small subset of all samples was used in the above analyses (those shown in bold in 435 

Table 2). Data from more samples are required to construct an ANN model. Four subsamples 436 

(ROIs) from all 152 samples in Table 2 were selected and the solid material of each particle in 437 

each ROI was assigned three different thermal conductivities, to render 456 datapoints used for 438 

the ANN model. The average 3D sphericity, 3D roundness, WCNave, porosity and λeff under a 439 

larger range of loads (up to 40.7 MPa) for these samples were calculated. In addition to setting 440 

the thermal conductivity of the solid phase as 3 W/(mK), 5 and 7 W/(mK) were also used for 441 

enriching the database. Although dimensionless λeff/λsolid instead of λeff was used as the output 442 

of the ANN model, the data in Fig. 11 (a) whose markers were rendered by λsolid still shows 443 

three distinct cluster groups that correspond to different λsolid. Therefore, the ANN model also 444 

requires λsolid as an input parameter. The markers in Fig. 11 (a) represent different sands and 445 

the size of the markers indicates the equivalent average particle diameter of the subsample. 446 

Figure 11 (b) presents the same data as Fig. 11 (a) but the markers show the loadings applied 447 

to the subsamples. The data were randomly split into a training set (80%), validation set (10%) 448 

and a testing set (10%).  449 

 450 
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 451 
Fig. 11. The database used to construct the ANN model. 452 

4.5.1 ANN model Ⅰ: λsolid, sphericity, roundness and WCNave as input parameters 453 

Packing structure models [46] are a type of models that use particle topology to predict λeff. 454 

However, few studies have been conducted except measuring particle connectivity using 455 

Voronoi tessellation [47], typical lattice structure [48] or bond orientation [49]. Since the 456 

WCNave can quantify the structure of granular materials, ANN model I used λsolid, sphericity, 457 

roundness and the WCNave (but not porosity) as input parameters and λeff/λsolid  as the output to 458 

imitate the packing structure models [46]. Figure 12 shows that sphericity and roundness 459 

display a good correlation to each other with R2 of 0.96 for the four tested sands. Still, complete 460 

coverage of the wide range of irregular particle shapes requires both parameters, as shown in 461 

[33]. The R2 of the correlation between each pair of the particle shape descriptors, WCNave and 462 

λsolid in Fig. 12 are not high, which implies that these input parameters are not redundant for 463 

ANN model I. The R2 of the relationship between WCNave and λeff/λsolid is 0.87, and indicates 464 

that interparticle connectivity and contact quality play crucial roles in the heat transfer of dry 465 

granular materials. 466 
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 467 

  468 
Fig. 12. A heatmap presents the R2 between each pair of features used in ANN model I 469 

 470 

The ANN is suitable for numerous complex problems due to its flexibility, which is also 471 

one of its main drawbacks [30]. Values of model and algorithm parameters (i.e., 472 

hyperparameters) should be decided since any imaginable network topologies can be used. This 473 

study tuned the learning rate 𝜂𝜂 , the neuron number in the hidden layer, and the structure 474 

indicating how neurons are interconnected to find the desirable ANN model. MSE was used to 475 

monitor the error during the training processes until epoch reached 2,000. An epoch is one 476 

cycle that the model learns through the full training dataset. 477 

The effect of learning rate 𝜂𝜂 and neuron number on the performance of the ANN model I 478 

with one hidden layer was first studied. The ANN model with different learning rates 𝜂𝜂 =479 

0.1, 0.01, 0.001, 0.0001 and a constant 30 neurons in the single hidden layer was trained. The 480 

large learning rates such as 𝜂𝜂 = 0.1, 0.01 seen in Figure 13 (a), boosted the ANN model and 481 

displayed low MSE even at the very beginning of training. However, the MSE maintained the 482 

same level until the end of training. By contrast, 𝜂𝜂 =  0.001 can reach a low MSE which is 483 

similar to the MSE when 𝜂𝜂 = 0.0001, and converge at an earlier stage. Therefore, 𝜂𝜂 = 0.001 484 

, a commonly used value [30], was selected as the learning rate for the ANN model I. Next, the 485 

neuron number was tuned in the single hidden ANN model with the learning rate 𝜂𝜂 = 0.001. 486 

Figure 13 (b) shows that the ANN model with more neurons requires a longer training time. 487 

Here we chose 30 neurons in a hidden layer to balance efficiency and accuracy. In the next 488 

study, five structures [50], [50,30], [50, 30, 10], [100, 50, 30], [100, 50, 30, 10] with 𝜂𝜂 = 0.001 489 

were implemented to analyse the effect of interconnection of neurons on the performance of 490 

ANN model. A structure indicates the number of hidden layers and the number of neurons in 491 
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each hidden layer. For example, the second structure [50, 30] means that an ANN model has 492 

two hidden layers, the first hidden layer has 50 neurons while the second hidden layer has 30 493 

neurons. It can be observed from Fig. 13 (c) that the second structure is appropriate for ANN 494 

model Ⅰ since it is relatively simple and its MSE converges at a medium rate. The converged 495 

MSE in Fig. 13 (c) is smaller than that in Fig. 13 (a) and Fig. 13 (b) by two orders of magnitude, 496 

which hints at the importance of a proper structure for an ANN model. Since the converged 497 

MSE in Fig. 13 (c) is also much smaller than the λeff/λsolid as shown in Fig. 11, the tuned 498 

hyperparameters were believed to be a proper combination for ANN model Ⅰ. Finally, the 499 

testing dataset was used to predict λeff/λsolid and compared with the ‘true’ values as shown in 500 

Fig. 13 (d). The predicted values have a high correlation (R2=0.97) with the actual values, 501 

indicating that the WCNave and particle shape characteristics can be used as variables in packing 502 

structure models to predict λeff/λsolid well. 503 

 504 

 505 
Fig. 13. Tuning learning rate 𝜂𝜂 (a), neuron number in the hidden layer (b) and structure (c) for ANN 506 

model I. The correlation between the actual effective thermal conductivity and predicted effective 507 
thermal conductivity using the tuned ANN model I on the testing set is show in (d). 508 
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4.5.2 ANN model Ⅱ: λsolid, sphericity, roundness, WCNave and porosity as input parameters 509 

ANN model I considered only microscale and mesoscale parameters. An ANN model II 510 

uses a macroscope parameter, porosity, in addition to those. In ANN model I, sphericity and 511 

roundness are among the input parameters that describe the geometry of a particle, and capture 512 

information from granular materials at particle-scale (microscale). The WCNave quantifies the 513 

particle connectivity and contact quality (mesoscale) but does not quantify the whole sample 514 

generally as the bulk properties do at macroscale. Porosity, a bulk property, is used in 515 

ANN model Ⅱ to include a variable at the sample scale (macroscale). Hence, ANN model II 516 

involves input parameters across all scales. After using the similar tuning processes for 517 

hyperparameters as shown in Fig. 14 (a)-(c), the same structure No.2 [50,30] with learning rate 518 

𝜂𝜂 = 0.001 were also selected for ANN model Ⅱ. Figure 14 (d) presents that the R2 of the 519 

relationship between the predicted and actual λeff/λsolid is 0.99, which is higher than ANN model 520 

I. The porosity as a new input parameter in ANN model II, quantifies the void fraction and 521 

loosely indicates the number of particles in a sample. Higher particle counts mean more 522 

potential heat transfer pathways in granular assemblies. As explained in previous sections, 523 

other parameters also relate to heat transfer mechanisms and capture three diverse aspects: (1) 524 

λsolid determines the heat transfer efficiency within particles; (2) sphericity and roundness 525 

indicate interparticle contact quality and (3) the WCNave measures particle connectivity and 526 

interparticle contact quality, and also relates to particle diameter (the heat transfer pathway 527 

within particles) and thermal conductance. Capturing abundant microstructural information 528 

that influence heat transfer certainly results in an accurate λeff prediction. Consequently, we 529 

conclude that considering multiscale microstructural parameters at different scales in λeff 530 

models can result in an accurate λeff prediction. Supplementary files with the two ANN models 531 

(ANN-Model-I.h5 and ANN-Model-II.h5) have been included in this paper for readers to use. 532 

 533 
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 534 
Fig. 14. Tuning learning rate 𝜂𝜂 (a), neuron number in the hidden layer (b) and structure (c) for the 535 

ANN model Ⅱ. The correlation between the actual effective thermal conductivity and predicted 536 
effective thermal conductivity using the tuned ANN model Ⅱ. 537 

5 Conclusions 538 

Microstructure and boundary conditions (e.g., axial loading) in granular materials control 539 

λeff, but microstructural parameters are seldomly used in existing λeff models, perhaps with the 540 

exceptions of (global) porosity and aspect ratio. The advancement of new techniques such as 541 

CT, complex network theory, and new numerical simulation methods enable access to the 542 

microstructure of natural sands and promote a need for data-driven approaches, for example 543 

with the advancement of machine learning techniques, to predict λeff accurately and efficiently. 544 

Four dry sand assemblies varying in particle size, shape and under different stress levels 545 

were CT scanned to achieve image stacks. By applying image processing methods to the image 546 

stacks, microstructural parameters such as particle size, 3D sphericity and roundedness and 547 

porosity were obtained. In addition, the contact network was constructed to calculate the WCN 548 

according to complex network theory. The applicability of these parameters to the ANN model 549 

was justified by the analysis of heat transfer mechanism, review of λeff models and their 550 

interplay. The utilisation of microstructural parameters provides the ANN model with some 551 
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physically-based preconditioning, rather than utilising an ANN model merely as a black-box 552 

with somehow random input parameters. Finally, the results indicate that the ANN model, 553 

which considers multiple-scale microstructural parameters can predict λeff well, with best 554 

predictions using parameters that characterise granular materials across scales: λsolid, sphericity, 555 

roundness (at the particle scale), WCN (at the mesoscale) and porosity (at the macroscale) 556 

This work proves the feasibility of applying ANN to material science, particularly for 557 

predictions of λeff. The physics-based data-driven approach allows the acceleration of material 558 

design in a more autonomous and objective process. This paper uses the WCN from a contact 559 

network since it is easier to estimate than other mesoscale network features [15]. However, the 560 

WCN from the contact network only considers the interparticle contacts but not near-contacts 561 

which can be involved in thermal network features [15]. The authors are striving to merge the 562 

several aforementioned techniques into a platform which can enable the academic community 563 

to achieve microstructural parameters including thermal network features easily and 564 

conveniently. Future work includes continuing to increase the current database of granular 565 

materials of different shapes and to explore ANN models built with thermal network features 566 

and non-dry materials.  567 
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