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Abstract 54 

Differences in the effective thermal conductivity (ETC) between measurements and models may be 55 

attributed to the limited ability to capture microstructural information of geomaterials. Today, computed 56 

tomography (CT) technology offers unprecedented access to such information, particularly for sands. 57 

Since a sand can be represented as a contact network made of nodes (particles) connected by edges 58 

(contacts), features (or variables) arising from the contact network can characterise particle connectivity. 59 

However, existing contact network features neglect the contribution of contact quality and of small gaps 60 

between neighbouring particles to heat transfer. To redress these issues, this paper introduces new 61 

weighted contact network features by considering contact area at each edge in the contact network. 62 

Additionally, thermal network features are proposed by considering small gaps as edges with/without 63 

being weighted by thermal conductance. All network features are calculated based on CT images of 64 

five real sands. The relationships between each feature and ETC are investigated. The results show that 65 

some network features that account for both the particle connectivity and contact quality can be used to 66 

predict ETC accurately. Advantages and limitations of this approach are also identified. 67 

Keywords: fabric/structure of soils; particle-scale behaviour; sands; finite-element modelling; 68 

complex network theory; 69 
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1. Introduction 71 

Heat transfer processes in soils are important in a variety of engineering applications. Take shallow 72 

geothermal energy projects as an example. Here heat is exchanged between the ground and fluid 73 

circulating in pipes embedded directly in the soil [1] (or rock) in purposely built boreholes or trenches, 74 

or incorporated in geostructures (e.g., energy piles, energy walls) [2]. With the help of a heat pump, the 75 

heat is upgraded to efficiently provide space heating and cooling to buildings. The effective thermal 76 

conductivity (ETC) of the ground is a key parameter in geothermal design [3]. ETC presents the ease 77 

of heat transfer in the ground, and thus largely determines the efficiency of the geothermal system [4, 78 

5]. 79 

Predicting ETC accurately is difficult due to the complex microstructure of the soils [6]. Since heat 80 

is transferred via particles [7], and porosity indicates the fraction of particles in a soil mass, the porosity 81 

is widely used to predict ETC, as it is readily obtainable. However, porosity-dependent models neglect 82 

the effects of the microstructure such as particle connectivity and contact quality on heat transfer [8-83 

10], given that porosity is a macro-scale parameter. As a result, porosity-dependent models are rarely 84 

valid for wide porosity ranges [10], especially for materials with a large ratio of solid to fluid thermal 85 

conductivity [11]. 86 

Packing structure models offer alternatives to porosity-dependent models by using structural 87 

characteristics instead of porosity as the key controlling variable [12]. The lack of accountability of 88 

structural data may result in the difference of ETC between models and experimental methods [6]. Some 89 

scholars have proposed microstructural characteristics such as: i) the minimum gap between particles 90 

and the mean local curvature [13, 14], ii) connectivity represented by Voronoi tessellation [15, 16], iii) 91 

an order characteristic by measuring rotational symmetry of particles [14], iv) the ratio between the 92 

radius of contact area and particle radius [17], v) particle size distribution [18], and vi) some results for 93 

typical regular structures [19] (simple cubic, body-centred cubic and face-centred cubic). However, 94 

these works focus on sphere packings rather than the irregular sand-size particles prevalent in nature. 95 

Even though a number of microstructural descriptors are available in the literature [20], the 96 

characterisations of particle connectivity in real sands are still scarce.  97 
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Recently, the wider availability of X-ray computed tomography (CT) has shed light on the 98 

microstructure of irregular granular materials [21-23]. Using imaging techniques, the structures of 99 

granular materials can be simplified into networks [24, 25]. A network is a web consisting of nodes and 100 

edges, which are defined depending on the type of network. For instance, in a contact network, each 101 

node represents a particle in a sand, and an edge is created when two particles touch. Based on the 102 

network, a number of network features (or variables such as degree, walks, paths, cycles, centralities 103 

and clustering coefficients in the literature [26]) can be calculated using complex network theory, and 104 

be employed to characterise the microstructure of granular materials. Russel et al. [27] advocated that 105 

a contact network could be used to understand mechanical stability, and a pore network could offer 106 

knowledge about the flow pathway in deforming granular materials. Fei et al. [28] found the local 107 

clustering coefficient (a contact network feature presenting particle connectivity) together with particle 108 

shape descriptor [29] have good correlations with ETC of sands under loadings. However, their work 109 

only applied a few contact network features to quantify the particle connectivity without evaluating the 110 

interparticle contact quality. Furthermore, the contact network features could not characterise the 111 

contribution of small gaps (near-contacts) between neighbouring particles to ETC. Since particle 112 

connectivity variables are still scarce, a question raised is whether more particle connectivity parameters 113 

can be discovered and whether a single variable can cover both particle connectivity and contact quality. 114 

Fei et al. [30] constructed contact networks and also extended them to thermal networks by considering 115 

the small gaps between neighbouring particles as new edges. Analytical (“exact”) expressions can be 116 

used to compute the interparticle contact area and construct networks for sphere packings; however, 117 

different image processing techniques and mathematical approaches are required when dealing with 118 

real sands.  119 

In the present paper, five irregular sands were used to quantify the correlations between network 120 

features and ETC. Both contact network features and thermal network features were extracted from 121 

each irregular sand. They are not only used to characterise the particle connectivity but also contact 122 

quality by considering the contact area in contact networks or thermal conductance in thermal networks, 123 

resulting in comprehensive microstructural parameters. Then, machine learning techniques were 124 

employed to evaluate the importance of the microstructural parameters in predicting ETC.  125 
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2. Materials  126 

Five sands with different particle shapes were selected, as shown in Fig. 1. The glass beads are round 127 

and made of silica, enabling studying almost perfectly regular packings, a strategy and material often 128 

adopted by many geotechnical researchers [31-33]. The particles of the Ottawa 20-30 sand [34] also 129 

contain quartz [35] and are rounded over time by hydromechanical weathering (e.g., in a river). Angular 130 

sand is also mainly composed of quartz, but its particles are more irregular than those of Ottawa sand. 131 

The particles in crushed Schist A are more irregular still, and are mostly made of chlorites. Finally, 132 

Schist B is collected from the Delamarian Fold Belt in western Victoria, Australia, and consists of 133 

quartz and biotite; its particles are the most irregular of the group under study, with half of them being 134 

elongated and platy [36]. The measured particle sizes of the five sands are summarised in Table 1. 135 

 136 

<Fig. 1 around here> 137 

 138 

Fig. 1. Five types of natural sand scanned with computed tomography. 139 

<Table 1 around here> 140 

Table 1 Particle size for the selected sands 141 

Sand 𝐷𝐷50 
(mm) 

Min particle 
diam. (mm) 

Max particle 
diam. (mm) 

Glass beads 0.60 0.50 0.70 

Ottawa sand 0.73 0.60 0.85 

Angular sand 0.89 0.60 1.18 

Crushed schist rock A 0.84 0.50 1.18 
Crushed schist rock B 0.84 0.50 1.18 

 142 

 143 
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3. Methods 144 

Fig. 2 shows a proposed framework which includes six blocks. In block 1, image stacks with a 145 

certain interval (resolution) were created by air-pluviating the sand in a PVC cylinder with a diameter 146 

of 25 mm and a height of 25 mm, and then scanning it with X-ray CT. The image stacks were cropped 147 

to the representative element volume and then used for three purposes: (i) calculating classic 148 

geotechnical microstructural parameters such as the average particle diameter and contact area ; (ii) 149 

constructing networks and computing network features (block 2); (iii) simulating heat transfer and 150 

calculating ETC using finite element method (FEM) (block 3); and For each feature, its correlation 151 

coefficient against ETC was presented using six mathematical models (block 5). The model with the 152 

highest correlation coefficient was recognised as the ‘best fit’ model, and the correlation coefficient 153 

was used to assess the importance of the feature in predicting ETC (block 6). 154 

 155 

<Fig. 2 around here> 156 

 157 

Fig. 2 Framework used to calculate the microstructural parameters and analyse their impact on the effective 158 

thermal conductivity of granular materials. 159 
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3.1 Numerical simulation and experiment 160 

Since this paper focuses on the impact of microstructure on ETC, the variance in ETC induced by 161 

mineral components was assumed to be mitigated by assigning the same thermal conductivity to the 162 

solids in the finite element models. The numerical results were also validated using the experimental 163 

results. 164 

3.1.1 Finite element simulation 165 

For each sand, four representative element volumes (REVs) of dimensions 4.55 × 4.55 × 4.55 mm 166 

(320 grains in Ottawa sand as an example) were randomly selected from the CT images. These 167 

dimensions are consistent or exceeding previously reported REVs of similar materials [37-40]. As 168 

shown in Fig. 3, the geometry of each subsample was reconstructed based on these CT images. The 169 

solid and pore phases were then split using the widely accepted Otsu threshold segmentation [41-44]. 170 

The thermal conductivity of the solid used in this paper was 3 W/(m K) [45-47], while that of air in the 171 

pore spaces was taken as 0.025 W/(m K) [48]. Reconstruction and segmentation were completed using 172 

Simpleware ScanIP [49] with a further meshing step. The mesh was then imported to a FEM software 173 

application called COMSOL Multiphysics [50] to simulate heat transfer [29, 51].  174 

In COMSOL Multiphysics, the boundary temperature at the top Ta was prescribed as 293 K, while 175 

that on the bottom Tb was 292 K to create a thermal gradient to drive heat flux (a different thermal 176 

gradient would render similar results), and the other boundary surfaces were insulated (i.e., nil heat 177 

flux). Next, the temperature distribution was computed by solving the governing energy balance 178 

equations [52]. Since dry sands were tested using a thermal needle, the simulation model only 179 

considered heat conduction. Fourier’s law was used to calculate the conductive heat flux, and a 180 

continuity equation was applied to ensure flux continuity at the particle-pore interface [51]. An example 181 

of the temperature and flux distribution is shown in Fig. 3. Based on the solutions for the heat flux at 182 

the top (inlet) and bottom (outlet) boundaries, the ETC at the two surfaces was calculated using Equation 183 

1. The mean ETC at the two boundaries was regarded as the ETC of the whole sample: 184 

 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 =
1
𝐴𝐴∫ 𝑄𝑄𝑧𝑧  𝑑𝑑𝐴𝐴 𝐴𝐴
𝑇𝑇𝑎𝑎 − 𝑇𝑇𝑏𝑏

𝐿𝐿
 (1) 
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where 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒   (𝑊𝑊/𝑚𝑚𝑚𝑚) is the ETC of the sample, 𝐴𝐴 (𝑚𝑚2) is a typical cross-sectional area, L (m) is the 185 

height of the packing, 𝑇𝑇𝑎𝑎 = 293 K and 𝑇𝑇𝑏𝑏 = 292 K are boundary temperatures at the top and bottom of 186 

the sample respectively, and 𝑄𝑄𝑧𝑧   (𝑊𝑊/𝑚𝑚2 ) is the vertical heat flux at a typical cross-section. 187 

 188 

<Fig. 3 around here> 189 

 190 

Fig. 3  The process of heat transfer simulation based on CT scanned images. 191 

3.1.2 Laboratory experiment 192 

In order to validate the ETC from numerical simulation, thermal needle testings were conducted to 193 

measure the ETC. The sands were rained into a PVC cylinder of diameter 50 mm and height 120 mm 194 

using the same air-pluviation method to prepare a homogeneous specimen. A 100-mm long thermal 195 

needle probe of diameter 2.4 mm was used to measure the ETC at room temperature, following ASTM 196 

standard D5334-14 [53]. The diameter of the selected needle was larger than the particle diameter 197 

(Table 1) to ensure more contacts between the probe and particles. A KD2 Pro thermal properties 198 

analyser with a manufacturer reported accuracy of ±10% for 0.2-4 W/mK materials was used [54]. 199 

This is consistent with standard requirements. 200 

 201 
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3.2 Complex networks 202 

3.2.1 Network construction 203 

A contact network can be constructed by assigning a node to the centroid of each particle and 204 

generating an edge between two nodes if the corresponding particles touch (Fig. 4). The particles in the 205 

CT images (Fig. 1) were connected, and watershed segmentation was required to split the connected 206 

particles into individual ones using an add-in called ‘MorphoLibj’ [55] in Fiji [56]. To avoid over-207 

segmentation of the contact area, which is important for heat transfer [7], a six-voxel neighbourhood 208 

[57] was used in the watershed algorithm. However, the contact network only considered interparticle 209 

heat transfer and neglected heat conducts via the air in the small gap between particles [46]. To address 210 

this, the contact network was extended to a thermal network by considering the small gaps as ‘near-211 

contacts’ and allocating edges to them, as shown in Fig. 4.  212 

 213 

<Fig. 4 around here> 214 

 215 

Fig. 4  The heat transfer path includes both interparticle contact and the small gaps between particles. Only 216 

interparticle contact is considered in the contact network, while both paths are involved in the thermal network. 217 

In a sphere packing (Fig. 5 (a)), any two adjacent particles are connected by either a circular contact 218 

of radius rc or a gap of distance hij. Hence, the network edges related to interparticle contacts and near-219 

contacts can be easily determined using analytical expressions. In contrast, the irregular particle shape 220 

of natural sands obtained through micro-CT (Fig. 5 (b)) posts a significant challenge to build networks 221 

representing them. In this work, the boundary voxels of each particle were first identified in the 222 
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watershed-segmented CT images using an edge detection algorithm and used to determine the 223 

interparticle contacts and near-contacts as follows: Boundary voxels shared between two particles made 224 

up an interparticle contact. For those voxels that are not in contact, if the distance between two voxels 225 

at the boundaries of two neighbouring particles are less than a certain threshold distance, they were 226 

labelled as in a near-contact. By following the work of van der Linden et al. [58] and Fei et al. [28], 227 

half the average particle radius was selected as this threshold distance by calibrating our thermal 228 

network model with network models for sphere packings [46] which was developed based on theoretical 229 

equations. There is another important difference when dealing with sphere packings vs real sands. To 230 

compute the thermal conductance at interparticle contacts and near-contacts, the analytical solutions are 231 

available for sphere packings [46]. In contrast,  the thermal conductance at the interparticle contact in 232 

real sands is computed in this work using the number of shared boundary voxels (Fig. 5 (b)), and the 233 

thermal conductance at near-contacts is calculated using the distance between voxels and computing 234 

conductance in parallel of a series of cylinders filling the near-contact gap between particles [28]. 235 

 236 

< Fig. 5  around here> 237 

 238 

Fig. 5  Identification of the interparticle contact and the near-contact in (a) a sphere packing and (b) a real 239 

sand from voxelated images. 240 

3.2.2 Network features 241 

After constructing the networks, network features can be extracted by using complex network theory. 242 

Four types of features were used here: (i) centrality; (ii) network scale; (iii) cycles; and (iv) clustering. 243 
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Centrality quantifies the ‘significance’ of a node, edge or structure in a network [59]. As shown in 244 

Fig. 6 (a), five metrics of centrality are used in this work. They highlight the significance of the nodes 245 

in different ways. The degree 𝜅𝜅(𝑖𝑖) of a node i, also known as the coordination number, is the number 246 

of edges linked to this node. Closeness centrality quantifies the closeness of a node to others in a 247 

network, and high closeness centrality means a node is in a ‘central’ position. Betweenness centrality 248 

qualifies the importance of a node or edge that acts as a ‘bridge’ between other nodes or edges. A high 249 

betweenness centrality indicates that the node or edge plays a vital role in the heat transfer path. 250 

Eigenvector centrality measures the wide-reaching influence of a node in a network by assigning a 251 

relative score to each node. A node with high eigenvector centrality indicates that it has good 252 

connections to other nodes with high scores. Top-to-bottom edge betweenness centrality is used to only 253 

consider the corresponding heat transfer paths when heat travels predominantly in one dimension (say, 254 

top to bottom) in response to the thermal gradient prescribed in this direction. Let us summarise next 255 

the formal definitions of key network features. 256 

  257 
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Fig. 6 Network features: (a) Identifying the nodes with the highest values of the different types of centrality 258 

features in a given network, (b) network scale features and (c) clustering coefficients for different networks with 259 

the same number of nodes [30]. 260 

 261 

For a node i in a node-set V, its closeness centrality is defined as the reciprocal of the sum over the 262 

shortest path d(i,j) from the node i to all other nodes j (Equation 2) [60].  263 

 [𝐺𝐺∗]𝐶𝐶(𝑖𝑖) = 𝛽𝛽 � � 𝑑𝑑(𝑖𝑖, 𝑗𝑗)
|𝑉𝑉|−1

𝑗𝑗=1

�

−1

 (2) 

where 𝛽𝛽 is a normalisation term set to be the number of reachable nodes |𝑉𝑉| − 1 and the number of 264 

maximum possible edges (|𝑉𝑉|(|𝑉𝑉| − 1))/2 in this study (both normalisations are trialled), here |V| is 265 

the number of nodes in the network. 266 

As shown in Equation 3, the node betweenness centrality of node i can be calculated as the sum of 267 

the ratio of 𝜎𝜎(𝑗𝑗, 𝑘𝑘|𝑖𝑖) (the number of shortest paths from any other two nodes j and k and pass i) to 𝜎𝜎(𝑗𝑗,𝑘𝑘) 268 

(the number of shortest paths from any other two nodes j and k). Similarly, the edge betweenness 269 

centrality of edge e is computed as the ratio of 𝜎𝜎(𝑗𝑗,𝑘𝑘|𝑒𝑒) (the number of shortest paths from any other 270 

two edges j and k and pass e) to  𝜎𝜎(𝑗𝑗,𝑘𝑘) (the number of shortest paths from any other two edges j and 271 

k). The betweenness centrality can be further normalised with 𝛽𝛽, which is 2/(|V-1|(|V|-2)) for node 272 

betweenness centrality and 2/[|V|(|V|-1)] for edge betweenness centrality [61]. 273 

 [𝐺𝐺∗]𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖) = 𝛽𝛽 �
𝜎𝜎(𝑗𝑗,𝑘𝑘|𝑖𝑖)
𝜎𝜎(𝑗𝑗,𝑘𝑘)

𝑗𝑗,𝑘𝑘𝑘𝑘𝑉𝑉

 (3) 

 274 

Network scale indicates the average distance from one node to others in a network. It helps in 275 

understanding the speed of heat transfer through networks with different topologies. As shown in Fig. 276 

6 (b), , heat transfers faster in a ‘tree’ network, since only two steps are required to reach six nodes 277 

compared with the three steps required in a ‘ring’ network. The network diameter 𝐺𝐺𝐷𝐷∗ , average shortest 278 

path length [𝐺𝐺∗]𝑃𝑃𝑤𝑤 and network density 𝐺𝐺𝜌𝜌∗ are used here to quantify the network scale. Network diameter 279 

is the length of the longest of the shortest paths in a network, and the normalised network diameter 𝐺𝐺𝐷𝐷𝑛𝑛
∗  280 
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can be achieved by dividing 𝐺𝐺𝐷𝐷∗  by |V|-1. As heat is transferred from the top surface (inlet) to the bottom 281 

surface (outlet) in the FEM models, as shown in Fig. 3, the average shortest path length between the 282 

inlet and outlet nodes is related to the heat transfer path and is used as another network feature. Network 283 

density 𝐺𝐺𝜌𝜌∗ is the ratio between the real edge number and the potential edge number, and represents the 284 

different particle connectivity in networks. The values of network-scale-type features in ring and tree 285 

networks are shown in Fig. 6 (b). 286 

A cycle is a loop that begins and ends at the same node. A L-cycle indicates that a loop has l edge, 287 

meaning that a 3-cycle is a triangle. As triangles are isostatic [62-64], a 3-cycle resists deformation, and 288 

the number of 3-cycles represents the rigidity of the microstructure of a sample [28, 65]. In this work, 289 

the number of 3-cycles and the normalised value based on edge and node numbers were calculated. 290 

Clustering measures the integrity of a network. The left figure of Fig. 6 (c) shows a fractured network 291 

with three clusters, where only one edge connects each of the clusters. In contrast, the right figure of 292 

Fig. 6 (c) shows a relatively integrated network, where the three clusters are well connected. The global 293 

[66] and local cluster coefficients [67] can be used to quantify the clustering of networks, as defined in 294 

Equations 4 and 5, respectively. It can be seen from Fig. 6 (c) that a fractured network has a higher 295 

clustering coefficient than an integrated network. 296 

  297 

 𝐺𝐺∗𝐺𝐺𝐶𝐶 = 3 
𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑒𝑒𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑛𝑛𝑖𝑖𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡

𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑒𝑒𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑑𝑑 𝑡𝑡𝑛𝑛𝑖𝑖𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡
 (4) 

 
[𝐺𝐺∗]𝐿𝐿𝐶𝐶 (i) =  

2𝑇𝑇(𝑖𝑖)
𝜅𝜅(𝑖𝑖)[𝜅𝜅(𝑖𝑖) − 1] 

(5) 

where T(i) is the number of triangles pass node i and 𝜅𝜅(𝑖𝑖) is the degree of node i. 298 

Network features were determined from the contact and thermal networks for each sample. An edge 299 

represents an interparticle contact in a contact network (Fig. 4) and the contact area can be calculated 300 

using the shared boundary voxels. As a larger contact area leads to greater heat transfer via interparticle 301 

contact [68, 69] and a larger degree indicates more interparticle contacts, the length of each edge for 302 

the degree was weighted by the contact area in the contact network which only considered interparticle 303 

contact. Hence, the physical meaning of  𝐺𝐺𝜅𝜅𝑤𝑤
𝐶𝐶 (𝑖𝑖) of node i is the total contact area between node i and 304 
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its neighbours, [𝐺𝐺𝐶𝐶]𝜅𝜅𝑤𝑤  is the average of 𝐺𝐺𝜅𝜅𝑤𝑤
𝐶𝐶  of all nodes in a network. As other network features with 305 

higher value such as closeness centrality in Equation 2 could be achieved by minimising the length of 306 

the shortest path, the length of each edge for other contact network features was weighted by the 307 

reciprocal of the contact area. Similarly, since thermal conductance can be calculated at interparticle 308 

contacts and near-contacts at thermal network edges, the length of each edge for degree was weighted 309 

by sum of thermal conductance through interparticle contact and near-contact between two 310 

neighbouring particles. Consequently, the physical meaning of  𝐺𝐺𝜅𝜅𝑤𝑤
𝑇𝑇 (𝑖𝑖) of node i is the total thermal 311 

conductance between node i and its neighbours, [𝐺𝐺𝑇𝑇]𝜅𝜅𝑤𝑤 is the average of 𝐺𝐺𝜅𝜅𝑤𝑤
𝑇𝑇  of all nodes in a network. 312 

The length of each edge for other thermal network features can be weighted by the reciprocal of thermal 313 

conductance.  314 

Classic geotechnical parameters including porosity and contact radius ratio (the radius of the contact 315 

area divided by that of the particle) were also calculated for each sample. Finally, all features were 316 

collected as a feature set (Table 2). The features were scaled (normalisation terminology in machine 317 

learning) [30]. since they had distinct ranges.   318 

<Table 2 around here> 319 

Table 2 Summary of features used in this work 320 

Type No. Notation Attribute 

Geotechnics 

1 𝑛𝑛 Porosity 
2 𝛾𝛾 Contact radius ratio 
3 𝐷𝐷50 Average particle diameter 
4 𝐶𝐶𝑢𝑢 Coefficient of uniformity 
5 𝐶𝐶𝑐𝑐 Coefficient of curvature 

Centrality 

6 [𝐺𝐺∗]𝜅𝜅 Degree (‘coordination number’ in a contact network) 
7 [𝐺𝐺∗]𝜅𝜅𝑤𝑤 Weighted degree 
8 [G∗]C Closeness centrality 
9 [G∗]Cn1 Closeness centrality normalised by |V| − 1 

10 [𝐺𝐺∗]𝐶𝐶𝑛𝑛2  Closeness centrality normalised by [|V|(|V|− 1)]/2 
11 [𝐺𝐺∗]𝐶𝐶𝑤𝑤 Weighted closeness centrality 
12 [𝐺𝐺∗]𝐶𝐶𝑛𝑛𝑤𝑤1  Weighted closeness centrality normalised by |V| − 1 
13 [𝐺𝐺∗]𝐶𝐶𝑛𝑛𝑤𝑤2  Weighted closeness centrality normalised by [|V|(|V|− 1)]/2 
14 [𝐺𝐺∗]𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 Node betweenness centrality 
15 [𝐺𝐺∗]𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 Normalised node betweenness centrality 
16 [𝐺𝐺∗]𝐵𝐵𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 Weighted node betweenness centrality 
17 [𝐺𝐺∗]𝐵𝐵𝑛𝑛𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 Normalised weighted node betweenness centrality 
18 [𝐺𝐺∗]𝐵𝐵𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 Edge betweenness centrality 
19 [𝐺𝐺∗]𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 Normalised edge betweenness centrality 

20 [𝐺𝐺∗]𝐵𝐵𝑤𝑤𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 Weighted edge betweenness centrality 
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Type No. Notation Attribute 
21 [𝐺𝐺∗]𝐵𝐵𝑛𝑛𝑤𝑤𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 Normalised weighted edge betweenness centrality 

22 [𝐺𝐺∗]
𝐵𝐵𝑤𝑤
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑡𝑡𝑡𝑡 Weighted top-to-bottom edge betweenness centrality average 

23 [𝐺𝐺∗]
𝐵𝐵𝑛𝑛𝑤𝑤
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑡𝑡𝑡𝑡 Normalised weighted top-to-bottom edge betweenness centrality 

average 
24 [𝐺𝐺∗]𝐸𝐸 Eigenvector centrality 
25 [𝐺𝐺∗]𝐸𝐸𝑤𝑤 Weighted eigenvector centrality 

Network 
scale 

26 𝐺𝐺𝜌𝜌∗ Network density 
27 𝐺𝐺𝐷𝐷∗  Network diameter 
28 𝐺𝐺𝐷𝐷𝑛𝑛

∗  Normalised network diameter 
29 [𝐺𝐺∗]𝑃𝑃𝑤𝑤 Weighted shortest path (average) 
30 [𝐺𝐺∗]𝑃𝑃𝑤𝑤𝑡𝑡𝑡𝑡 Average weighted shortest path between  inlet and outlet nodes  

Clustering 31 𝐺𝐺∗𝐺𝐺𝐶𝐶 Global clustering coefficient 
32 [𝐺𝐺∗]𝐿𝐿𝐶𝐶  Local clustering coefficient 

Cycles 
33 𝐺𝐺3𝐶𝐶∗  Number of 3-cycles 
34 [𝐺𝐺∗]3𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  Average number of node 3-cycles 
35 [𝐺𝐺∗]3𝐶𝐶edge  Average number of edge 3-cycles 

[G*] is a unified characteristic, and [GC] refers to contact network features, while [GT] refers to thermal networks. 321 
The brackets in [G*] indicate an average value of the parameter. |V| is the total number of nodes in the network. 322 

3.3 Model selection and feature importance 323 

3.3.1 Model selection 324 

We aimed to identify the essential features for ETC from the 35 features shown in Table 2. For each 325 

pair of a feature and ETC, six common mathematical models (linear, quadratic polynomial, cubic 326 

polynomial, exponential, logarithmic and power) were used to compute their correlation coefficient R2. 327 

These six models were linearized for higher computational efficiency. Among the six models, the one 328 

with the highest R2 was selected as the ‘best fit’ model. The challenge when using different orders of 329 

polynomials was to avoid over-fitting. To address this concern, LASSO regression and cross-validation 330 

were used in this study [70]. 331 

LASSO (least absolute shrinkage and selection operator) regression [71] is an extension of 332 

regression analysis that considers regularisation in generalised linear models. It penalises the non-zero 333 

coefficient of the variables in linear models, meaning that many coefficients will be zeroed. The process 334 

of zeroing covariates is also a variable selection which benefits the interpretability of the models and 335 

the accuracy of prediction. We adopted the LASSO regression, embedded in a Python library called 336 

scikit-learn [72]. 337 

In a prediction problem, one part of the dataset (training dataset) is used to train the model, while 338 

another part (validation or testing dataset) is used to test its performance. However, if the dataset is 339 
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small, there may be insufficient unknown data for testing. K-fold cross validation [73] can resolve this 340 

issue by partitioning the dataset randomly into K subsets, each of which is used in turn as a validation 341 

dataset, while the other K−1 subsets are combined as the training dataset, generating a total of K scores 342 

for R2. The average K score is then used to evaluate the fitting accuracy of the model. As six models 343 

were involved in this work, the model with the highest average score was selected as the ‘best fit’ model. 344 

K was set to four in this work. 345 

3.3.2 Feature relevance 346 

The average score can only be used to evaluate the model, rather than to assess the importance of a 347 

feature, since the type of model is a new feature that is not considered in training. In order to evaluate 348 

the importance of each score to the ETC, a new general correlation coefficient R2 was calculated, based 349 

on all of the data. 350 

4. Results and Discussion 351 

4.1 Effective thermal conductivity  352 

Four subsamples were selected from each sand, and ETC values were computed using FEM, as 353 

shown in Fig. 7. The simulated results were also validated using the experimental results and data 354 

reported by Narsilio et al. [51] and Yun and Santamarina [7]. The simulated ETC decreases as porosity 355 

increases from 0.35 to 0.50. Increasing porosity indicates a lower percentage of solid particles in the 356 

sand, resulting in a potential decrease in interparticle contact number, which forms the primary heat 357 

transfer path in dry granular materials [45]. However, when the porosity increases beyond 0.50, the 358 

variation in the ETC becomes minimal. This demonstrates that the porosity is not directly related to 359 

ETC in geomaterials such as frozen ground where void space is largely occupied by ice or ice lenses, 360 

and a large porosity of more than 0.5 is common.  361 

The experimental results show a similar trend, although their absolute values are lower. This 362 

difference arises from several aspects: (i) the error in needle probe testing; (ii) since the CT images are 363 

voxelated and the interface between the solid and void phases has a sawtooth pattern, the contact area 364 

may be overestimated when threshold segmentation is used [28, 44]; (iii) the image resolution and finite 365 

element meshing techniques cannot capture the particle surface roughness [51]. CT images with higher 366 
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resolution can improve the calculation of the contact area. However, the selection of the image 367 

resolution is a trade-off between sample size and resolution: a larger sample (more grains) with lower 368 

resolution while smaller sample (fewer grains) boosting higher resolution. Estimating ETC accurately 369 

and directly from large size and high-resolution CT images using finite element methods is not currently 370 

practical. 371 

<Fig. 7 around here> 372 

  373 

Fig. 7. The ETC of five types of sand are computed using the finite element method and validated using 374 

experimental results. 375 

4.2 Effects of network features on ETC 376 

Contact and thermal networks were constructed to compute the network feature set in Table 2. Fig. 377 

8 shows examples of these networks for the same sample. The thermal network has more edges than 378 

the contact network does since it considers not only interparticle contacts but also near-contacts. The 379 

different number of edges changes the values of the network features. As ‘near-contact’ edges in the 380 

thermal network reduce the shortest path between nodes, the node closeness centrality calculated from 381 

the thermal network is larger than that for the contact network, according to Equation 2. 382 

 383 

<Fig. 8 around here> 384 
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 385 

Fig. 8. Contact and thermal networks: (a) Only real contacts (red edges) are considered in a contact network, 386 

while (b) both real contacts and ‘near-contacts’ (blue edges) are considered in a thermal network for the same 387 

sample. Sand grains were presented by spheres with equivalent particle diameters. 388 

 389 

Using the model selection and feature importance evaluation methods, the correlations between each 390 

pair of features and simulated ETC is calculated, and the scores are shown in Fig. 9. The ‘best fit’ model 391 

for each feature and the exact values of the scores are summarised in Appendix 1. Fig. 9 shows that 392 

porosity (Feature 1) as a classic geotechnical feature that has a high score of 0.93. The degree [𝐺𝐺𝐶𝐶]𝜅𝜅 393 

(Feature 6) of the contact network, also known as the coordination number in geotechnics, has a high 394 

score of 0.96. Fig. 10(a) shows that ETC increases with [𝐺𝐺𝐶𝐶]𝜅𝜅 , indicating that more interparticle 395 

contacts result in a larger ETC. Although the values of [𝐺𝐺𝐶𝐶]𝜅𝜅 for crushed Schist A and B are similar as 396 

shown in Fig. 10(a), the values of the four subsamples in a given sand disperses. Samples of Ottawa 397 

and angular sand may have the same [𝐺𝐺𝐶𝐶]𝜅𝜅 but quite different values of ETC. In contrast, the weighted 398 

degree [𝐺𝐺𝐶𝐶]𝜅𝜅𝑤𝑤 (Feature 7) considers the interparticle contact area at each network edge based on [𝐺𝐺𝐶𝐶]𝜅𝜅 399 

(coordination number) which characterises only the particle connectivity. In other words, the physical 400 

meaning of 𝐺𝐺𝜅𝜅𝑤𝑤
𝐶𝐶 (𝑖𝑖) of node i is the total contact area between node i and its neighbours, [𝐺𝐺𝐶𝐶]𝜅𝜅𝑤𝑤 is the 401 

average of 𝐺𝐺𝜅𝜅𝑤𝑤
𝐶𝐶  of all nodes in a network. Fig. 10(b) shows that [𝐺𝐺𝐶𝐶]𝜅𝜅𝑤𝑤 classifies the five materials into 402 

different groups, indicating a feature including both particle connectivity and contact quality 403 

(interparticle contact area) could have a better correlation with ETC. It also can be seen from Fig. 10(b) 404 
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that the data for crushed Schist B do not fall on the fitted line, due to its larger contact ratio (Fig. 10(c)) 405 

than crushed Schist A, even though they have similar coordination numbers (Fig. 10(a)). The larger 406 

interparticle contact area may be because half of the particles in crushed Schist B are elongated and 407 

platy (Fig. 1) [29]. Although the score of [𝐺𝐺𝐶𝐶]𝜅𝜅𝑤𝑤 is slightly lower than [𝐺𝐺𝐶𝐶]𝜅𝜅 due to data deviation in 408 

crushed Schist B, weighted degree [𝐺𝐺𝐶𝐶]𝜅𝜅𝑤𝑤 is still a good candidate for predicting ETC, since it has a 409 

high correlation with ETC and it involves information on both particle connectivity and contact quality. 410 

Instead of quantifying the contact quality using the interparticle contact area, thermal conductance can 411 

measure both the interparticle contact quality and near-contact (Fig. 4) quality. The weighted degree 412 

[𝐺𝐺𝑇𝑇]𝜅𝜅𝑤𝑤  derived from the thermal network (as opposed to from the contact network, note the T 413 

superscript) was calculated by adding the thermal conductance at each thermal network edge. The 414 

physical meaning of 𝐺𝐺𝜅𝜅𝑤𝑤
𝑇𝑇 (𝑖𝑖) of node i is the total thermal conductance between node i and its neighbours, 415 

[𝐺𝐺𝑇𝑇]𝜅𝜅𝑤𝑤 is the average of 𝐺𝐺𝜅𝜅𝑤𝑤
𝑇𝑇  of all nodes in a network. A curve presented by Equation 6 describes the 416 

correlation between [𝐺𝐺𝑇𝑇]𝜅𝜅𝑤𝑤  and ETC as shown in Fig. 10(d). The data for crushed Schist B now is on 417 

the fitted curve rather than off the fitted curve as shown in Fig. 10(b). Compared with the differences 418 

in porosity between crushed Schist A and B for the same ETC (Fig. 7), the values of [𝐺𝐺𝑇𝑇]𝜅𝜅𝑤𝑤   are similar, 419 

the plateau in Fig. 7 indicates that heat transfer more directly relies on the particle connectivity than the 420 

solid/pore fraction.  421 

 422 

<Fig. 9 around here> 423 

 424 

Fig. 9. The importance of each feature to ETC (feature number refers to the listing in Table 2). 425 
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<Fig. 10 around here> 426 

 427 

 428 

Fig. 10. Relationship between ETC and (a) contact network feature degree [𝐺𝐺𝐶𝐶]𝜅𝜅 (coordination number); (b) 429 

contact network feature weighted degree [𝐺𝐺𝐶𝐶]𝜅𝜅𝑤𝑤; (c) : contact radius ratio 𝛾𝛾; and (d) thermal network feature 430 

weighted degree [𝐺𝐺𝑇𝑇]𝜅𝜅𝑤𝑤. 431 

 
𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒
𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= 1.71�[𝐺𝐺𝑇𝑇]κw �
2
− 1.81[𝐺𝐺𝑇𝑇]κw + 0.58 (6) 

 432 

For closeness centrality type of features (Features 8–13 in Fig. 9) which indicate the distance 433 

between nodes in a network, [𝐺𝐺𝑇𝑇]𝐶𝐶𝑛𝑛1 (Feature 9) has the highest score of 0.94. Fig. 11(a) shows that 434 

ETC decreases with increasing [𝐺𝐺𝑇𝑇]𝐶𝐶𝑛𝑛1; the trend is different from the relationship between ETC and 435 

other unweighted particle connectivity variables such as [𝐺𝐺𝐶𝐶]𝜅𝜅 for the contact network. The decreasing 436 

trend of ETC with [𝐺𝐺𝑇𝑇]𝐶𝐶𝑛𝑛1 is because near-contacts in the thermal network reduce the shortest path d(i,j) 437 

used in Equation 2. The high percentage of near-contact edges in a thermal network constructed from 438 
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irregular particles such as crushed Schist results in a high [𝐺𝐺𝑇𝑇]𝐶𝐶𝑛𝑛1  [28]. As heat transfer is lower through 439 

near-contacts than that in interparticle contacts, thermal conductance was added as weight at thermal 440 

network edges to obtain [𝐺𝐺𝑇𝑇]𝐶𝐶𝑛𝑛𝑤𝑤2 (Feature 13). A near-contact acting as the shortest path in the 441 

unweighted thermal network may not be the shortest path in the weighted thermal network since thermal 442 

conductance is low at near-contacts. Fig. 11(b) shows the increase in [𝐺𝐺𝐶𝐶]𝐶𝐶𝑛𝑛𝑤𝑤1 with ETC, which is 443 

similar to the effect of [𝐺𝐺𝐶𝐶]𝜅𝜅𝑤𝑤 on ETC, as shown in Fig. 10(b). Since Fig. 9 shows [𝐺𝐺∗]𝐶𝐶𝑛𝑛𝑤𝑤2 (Feature 444 

13) from both contact network and thermal network have high linear correlation (R2 around 0.95) with 445 

ETC, the relationships are plotted in Fig. 11(c) for [𝐺𝐺𝐶𝐶]𝐶𝐶𝑛𝑛𝑤𝑤2  and Fig. 11(d) for [𝐺𝐺𝑇𝑇]𝐶𝐶𝑛𝑛𝑤𝑤2, respectively. 446 

The relationship between [𝐺𝐺𝑇𝑇]𝐶𝐶𝑛𝑛𝑤𝑤2and ETC is described by Equation 7, this simple linear equation 447 

results in a similar R2 as the Quadratic polynomial Equation 6 which considers [𝐺𝐺𝑇𝑇]𝜅𝜅𝑤𝑤 as a single 448 

variable. However, the values of [𝐺𝐺𝑇𝑇]𝐶𝐶𝑛𝑛𝑤𝑤2 for different sands are not distribute as evenly as the values 449 

of [𝐺𝐺𝑇𝑇]𝜅𝜅𝑤𝑤. 450 

 451 

<Fig. 11 around here> 452 
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 453 

 454 

Fig. 11. The relationship between ETC and contact network feature (a) [𝐺𝐺𝑇𝑇]𝐶𝐶𝑛𝑛1(closeness centrality 455 

normalised by |V|-1) and (b) [𝐺𝐺𝑇𝑇]𝐶𝐶𝑛𝑛𝑤𝑤1  (weighted closeness centrality normalised by |V|-1). 456 

 457 

 
𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒
𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= 0.069[𝐺𝐺𝑇𝑇]𝐶𝐶𝑛𝑛𝑤𝑤1 − 0.098 (7) 

 458 

Betweenness centrality is another type of centrality to quantify the importance of a node or edge as 459 

a ‘bridge’. Fig. 9 shows that contact network features [𝐺𝐺𝐶𝐶]
𝐵𝐵𝑛𝑛
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 (Feature 19) and [𝐺𝐺𝐶𝐶]

𝐵𝐵𝑛𝑛𝑤𝑤
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 (Feature 460 

21) have scores larger than 0.9, and their relationships with ETC are shown in Fig. 12. Higher [𝐺𝐺𝐶𝐶]
𝐵𝐵𝑛𝑛
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 461 

means that the different parts of the sample are more separated, and ETC is lower in a sample with a 462 

larger [𝐺𝐺𝐶𝐶]
𝐵𝐵𝑛𝑛
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 , as shown in Fig. 12. Since the betweenness centrality calculates a percentage 463 

(Equation 3) of the shortest path via a node or edge, adding weight keeps the value of the betweenness 464 

centrality (percentage) within a similar range, even though the shortest paths are changed. The weighted 465 
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edge betweenness centrality [𝐺𝐺𝐶𝐶]
𝐵𝐵𝑛𝑛𝑤𝑤
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛  also enables data from the a given material to be closer by 466 

comparing the data for the angular sand in Fig. 12(a) and Fig. 12Fig. 12(b). In contrast to the weighted 467 

edge betweenness centrality for the contact network [𝐺𝐺𝐶𝐶]
𝐵𝐵𝑛𝑛𝑤𝑤
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 , the weighted edge betweenness 468 

centrality [𝐺𝐺𝑇𝑇]
𝐵𝐵𝑛𝑛𝑤𝑤
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 for the thermal network has a lower score of 0.78 (Fig. 9). The lower score of 469 

[𝐺𝐺𝑇𝑇]
𝐵𝐵𝑛𝑛𝑤𝑤
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛  indicates that heat transfer via near-contacts reduces the correlation between edge 470 

betweenness centrality and ETC, it is possibly because the directions of heat transfer at near-contact 471 

edges are not considered when calculating the shortest path. The shortest path with highest local thermal 472 

conductance without considering the heat transfer orientation may not be the optimal heat transfer path, 473 

resulting in the average weighted shortest path [𝐺𝐺T]𝑃𝑃𝑤𝑤 (Feature 29) in the thermal network having a 474 

lower correlation with ETC than [𝐺𝐺𝐶𝐶]𝑃𝑃𝑤𝑤. In contrast, [𝐺𝐺𝑇𝑇]
𝐵𝐵𝑤𝑤
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑡𝑡𝑡𝑡  (Feature 22), which only measures 475 

the edge betweenness centrality in the main heat transfer direction (between the top and bottom sample 476 

surfaces) for the thermal network, has a similar score to [𝐺𝐺𝐶𝐶]
𝐵𝐵𝑤𝑤
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑡𝑡𝑡𝑡  for the contact network. 477 

 478 
<Fig. 12 around here> 479 

 480 

 481 

Fig. 12. Contact network features: (a) [𝐺𝐺𝐶𝐶]
𝐵𝐵𝑛𝑛
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 (normalised edge betweenness centrality) and (b) 482 

[𝐺𝐺𝐶𝐶]
𝐵𝐵𝑛𝑛𝑤𝑤
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 (normalised weighted edge betweenness centrality) has a high correlation with ETC.  483 

From the definitions of cluster-type and cycle-type features, they are related only to the particle 484 

connectivity, without quantifying the contact quality. However, the local clustering coefficient [𝐺𝐺𝑇𝑇]𝐿𝐿𝐶𝐶 485 
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(Feature 32) for the thermal network and the number of 3-cycles 𝐺𝐺3𝐶𝐶𝐶𝐶  (Feature 33) for the contact 486 

network show good correlation with ETC. Since [𝐺𝐺𝑇𝑇]𝐿𝐿𝐶𝐶 measures the density of triangles in the thermal 487 

network, ETC decreases with increasing [𝐺𝐺𝑇𝑇]𝐿𝐿𝐶𝐶 (Fig. 13(a)) due to the large percentage of near-contacts 488 

in irregular particle packings. In contrast, ETC increases with the number of 3-cycles in regular particle 489 

packings, as shown in Fig. 13(b). 490 

 491 

<Fig. 13 around here> 492 

 493 

 Fig. 13. (a) Thermal network feature [𝐺𝐺𝑇𝑇]𝐿𝐿𝐶𝐶  (local clustering coefficient) and (b) contact network feature 494 

𝐺𝐺3𝐶𝐶𝐶𝐶  (number of 3-cycles) show good correlation with ETC. 495 

4.3 Relationships between features 496 

Several network features affect ETC and all of these are mesoscale features used to indicate the 497 

connectivity of particles, and some consider contact quality. Hence, strong relationships may exist 498 

between them. Fig. 9 shows that thermal network features present lower correlations with ETC than 499 

contact network features, indicating that correlation between the former is weaker than for the latter. 500 

The correlations between each pair of the variables in Table 2 were therefore calculated (network 501 

features computed from thermal networks). The same procedures for model selection and feature 502 

importance were used to study the relationship between each feature and ETC. Fig. 14 shows that the 503 

correlation between centrality features (Features 6–25) is high, and the correlation coefficient between 504 

[𝐺𝐺𝑇𝑇]𝜅𝜅𝑤𝑤 (Featrue 7) and [𝐺𝐺𝑇𝑇]𝐶𝐶𝑛𝑛𝑤𝑤2 (Featrue 13)  is 0.94. Fig. 15(a) shows they have a positive relationship 505 

since they both measure the weighted particle connectivity. [𝐺𝐺𝑇𝑇]
𝐵𝐵𝑤𝑤
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑡𝑡𝑡𝑡  (Feature 22) and [𝐺𝐺𝑇𝑇]𝐿𝐿𝐶𝐶  506 
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(Feature 32) are both percentages according to their definitions and have a correlation coefficient of 507 

0.80. Fig. 15(b) shows they have a negative relationship, since higher [𝐺𝐺𝑇𝑇]
𝐵𝐵𝑤𝑤
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑡𝑡𝑡𝑡  means that a network 508 

is more fractured (the sample is looser), while higher [𝐺𝐺𝑇𝑇]𝐿𝐿𝐶𝐶 indicates more integration (the sample is 509 

denser). 510 

 511 

<Fig. 14 around here> 512 

 513 

Fig. 14. The score between each two features. Feature 0 is the dimensionless ETC and other features refer to 514 
Table 2. 515 

<Fig. 15 around here> 516 

 517 

  518 
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Fig. 15. Relationships between thermal network features: (a) relationship between [𝐺𝐺𝑇𝑇]𝜅𝜅𝑊𝑊 (weighted degree) 519 

and [𝐺𝐺𝑇𝑇]𝐶𝐶𝑛𝑛1  (closeness centrality normalised by |V|-1); (b) relationship between [𝐺𝐺𝑇𝑇]
𝐵𝐵𝑤𝑤
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑡𝑡𝑡𝑡  (average weighted 520 

top-to-bottom edge betweenness centrality) and [𝐺𝐺𝑇𝑇]𝐿𝐿𝐶𝐶 (local clustering coefficient). 521 

5. Conclusion 522 

In order to find microstructural features to predict ETC, five sands were selected, and multiple 523 

network features for both contact and thermal networks were calculated. After analysing the 524 

relationships between each feature and the ETC, network features such as weighted degree and weighted 525 

closeness centrality are good predictors of ETC not only for sphere packings [30] but also for real sands. 526 

Their merit is because they can capture more information (both the particle connectivity and contact 527 

quality) than traditional parameters such as porosity. The importance of network features to ETC also 528 

relieve the concern that the lack of structural data may result in the difference of ETC between models 529 

and methods [6]. We also note that estimating ETC accurately using finite element methods may be 530 

practically feasible only when enough computational power and higher CT image resolutions are 531 

available. 532 

Both contact and thermal network features have certain benefits and limitations. The thin wedge of 533 

interstitial gas between two particles [74], moisture content around the interparticle spaces and thermal 534 

radiation may enable more indirect heat transfers via ‘near-contacts’, therefore enhance the importance 535 

of thermal network features. Some network features may have close correlations with each other, and 536 

it may be sufficient to use just one of these in the model. 537 

The acquirement of network features for real sands needs image processing techniques and network 538 

construction and feature extractions (i.e. additional mathematic calculations). However, with the 539 

affordability of CT and a well-developed framework that the authors are working on, numerous 540 

parameters/features can be achieved more efficiently and cost-effectively. For example, twenty-four 541 

hours saturation is required to measure the porosity of a sample while it takes thirty minutes CT 542 

scanning and five minutes to achieve not only porosity but particle size, shape, connectivity with this 543 

framework. Moreover, the work also shows the potential capability of extracting macroscopic quantities 544 
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related to mechanical response, fluid flow, heat transfer and electrical conduction based on the CT 545 

images. 546 
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Appendix 704 

Appendix 1 The score and model used to evaluate the importance of each feature to ETC. 705 

Type NO. Notation Contact network features Thermal network features 
Score Model Score Model 

Geotechnics 

1 𝑛𝑛 0.9317 Quadratic polynomial 0.9317 Quadratic polynomial 
2 𝛾𝛾 0.8889 Linear 0.8889 Linear 
3 𝐷𝐷50 0.0106 Cubic Polynomial 0.0106 Cubic Polynomial 
4 𝐶𝐶𝑢𝑢 0.1772 Logarithmic 0.1772 Logarithmic 
5 𝐶𝐶𝑐𝑐 0.0694 Logarithmic 0.0694 Logarithmic 

Centrality 

6 [𝐺𝐺∗]𝜅𝜅 0.9638 Linear 0.5883 Cubic Polynomial 
7 [𝐺𝐺∗]𝜅𝜅𝑤𝑤 0.9184 Quadratic polynomial 0.9515 Quadratic polynomial 
8 [G∗]C 0.7084 Logarithmic 0.783 Logarithmic 
9 [G∗]Cn1 0.7129 Cubic Polynomial 0.9354 Quadratic polynomial 
10 [𝐺𝐺∗]𝐶𝐶𝑛𝑛2  0.8281 Linear 0.7055 Cubic Polynomial 
11 [𝐺𝐺∗]𝐶𝐶𝑤𝑤 0.1831 Quadratic polynomial 0.4884 Cubic Polynomial 
12 [𝐺𝐺∗]𝐶𝐶𝑛𝑛𝑤𝑤1  0.914 Quadratic polynomial 0.5629 Power 
13 [𝐺𝐺∗]𝐶𝐶𝑛𝑛𝑤𝑤2  0.9481 Linear 0.9545 Linear 
14 [𝐺𝐺∗]𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 0.7539 Linear 0.8352 Linear 
15 [𝐺𝐺∗]𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 0.8336 Quadratic polynomial 0.691 Cubic Polynomial 
16 [𝐺𝐺∗]𝐵𝐵𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 0.6613 Linear 0.7129 Linear 
17 [𝐺𝐺∗]𝐵𝐵𝑛𝑛𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 0.8818 Quadratic polynomial 0.7961 Cubic Polynomial 
18 [𝐺𝐺∗]𝐵𝐵𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 0.6148 Cubic Polynomial 0.8924 Linear 
19 [𝐺𝐺∗]𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 

0.9207 Quadratic polynomial 0.7119 Cubic Polynomial 
20 [𝐺𝐺∗]𝐵𝐵𝑤𝑤𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 0.3219 Cubic Polynomial 0.7963 Linear 
21 [𝐺𝐺∗]𝐵𝐵𝑛𝑛𝑤𝑤𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 

0.9356 Quadratic polynomial 0.7754 Cubic Polynomial 
22 [𝐺𝐺∗]

𝐵𝐵𝑤𝑤
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑡𝑡𝑡𝑡  0.8232 Quadratic polynomial 0.8416 Exponential 

23 [𝐺𝐺∗]
𝐵𝐵𝑛𝑛𝑤𝑤
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑡𝑡𝑡𝑡  0.5777 Logarithmic 0.5318 Cubic Polynomial 

24 [𝐺𝐺∗]𝐸𝐸 0.2557 Logarithmic 0.7287 Cubic Polynomial 
25 [𝐺𝐺∗]𝐸𝐸𝑤𝑤 0.7846 Quadratic polynomial 0.5632 Quadratic polynomial 

Network 
scale 

26 𝐺𝐺𝜌𝜌∗ 0.5631 Cubic Polynomial 0.8434 Quadratic polynomial 
27 𝐺𝐺𝐷𝐷∗  0.1922 Linear 0.8051 Quadratic polynomial 
28 𝐺𝐺𝐷𝐷𝑛𝑛

∗  0.8627 Quadratic polynomial 0.4004 Cubic Polynomial 
29 [𝐺𝐺∗]𝑃𝑃𝑤𝑤 0.9036 Cubic Polynomial 0.625 Exponential 
30 [𝐺𝐺∗]𝑃𝑃𝑤𝑤𝑡𝑡𝑡𝑡 0.868 Cubic Polynomial 0.4311 Exponential 

Clustering 31 𝐺𝐺∗𝐺𝐺𝐶𝐶 0.7292 Quadratic polynomial 0.8314 Quadratic polynomial 
32 [𝐺𝐺∗]𝐿𝐿𝐶𝐶  0.4897 Linear 0.8812 Exponential 

Cycles 
33 𝐺𝐺3𝐶𝐶∗  0.9418 Logarithmic 0.688 Quadratic polynomial 
34 [𝐺𝐺∗]3𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  0.9169 Linear 0.344 Cubic Polynomial 
35 [𝐺𝐺∗]3𝐶𝐶edge  0.8401 Quadratic polynomial 0.0121 Logarithmic 

[G*] is a unified characteristic, and [GC] refers to contact network features, while [GT] refers to thermal networks. 706 
The brackets in [G*] indicate an average value of the parameter. 707 

  708 
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List of Figures 709 

Fig. 1. Five types of natural sand scanned with computed tomography. 710 

Fig. 2 Framework used to calculate the microstructural parameters and analyse their impact on the 711 

effective thermal conductivity of granular materials. 712 

Fig. 3  The process of heat transfer simulation based on CT scanned images. 713 

Fig. 4  The heat transfer path includes both interparticle contact and the small gaps between particles. 714 

Only interparticle contact is considered in the contact network, while both paths are involved in the 715 

thermal network. 716 

Fig. 5  Identification of the interparticle contact and the near-contact in (a) a sphere packing and (b) a 717 

real sand from voxelated images. 718 

Fig. 6. Network features: (a) The highest values of the different types of centrality features are found 719 

for different nodes in a given network,; (b) Network scale features and (c) Clustering coefficients [30]. 720 

Fig. 7. The ETC of five types of sand are computed using the finite element method and validated using 721 

experimental results. 722 

Fig. 8. Contact and thermal networks: (a) Only real contacts (red edges) are considered in a contact 723 

network, while (b) both real contacts and ‘near-contacts’ (blue edges) are considered in a thermal 724 

network for the same sample. Sand grains were presented by spheres with equivalent particle diameter. 725 

Fig. 9. The importance of each feature to ETC (feature number refers to the listing in Table 2). 726 

Fig. 10. Relationship between ETC and (a) contact network feature degree [𝐺𝐺𝐶𝐶]𝜅𝜅  (coordination 727 

number); (b) contact network feature weighted degree [𝐺𝐺𝐶𝐶]𝜅𝜅𝑊𝑊; (c) : contact radius ratio 𝛾𝛾; and (d) 728 

thermal network feature weighted degree [𝐺𝐺𝑇𝑇]𝜅𝜅𝑊𝑊. 729 

Fig. 11. The relationship between ETC and contact network feature (a) [𝐺𝐺𝑇𝑇]𝐶𝐶𝑛𝑛1  (closeness centrality 730 

normalised by |V|-1) and (b) [𝐺𝐺𝑇𝑇]𝐶𝐶𝑛𝑛𝑤𝑤1  (weighted closeness centrality normalised by |V|-1). 731 

Fig. 12. Contact network features: (a) [𝐺𝐺𝐶𝐶]
𝐵𝐵𝑛𝑛
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛  (normalised edge betweenness centrality) and (b) 732 

[𝐺𝐺𝐶𝐶]
𝐵𝐵𝑛𝑛𝑤𝑤
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 (normalised weighted edge betweenness centrality) has a high correlation with ETC. 733 

Fig. 13. (a) Thermal network feature [𝐺𝐺𝑇𝑇]𝐿𝐿𝐶𝐶  (local clustering coefficient) and (b) contact network 734 

feature 𝐺𝐺3𝐶𝐶𝐶𝐶  (number of 3-cycles) show good correlation with ETC. 735 

Fig. 14. The score between each two features. Feature 0 is the dimensionless ETC and other features 736 

refer to Table 2. 737 

Fig. 15. Relationships between thermal network features: (a) relationship between [𝐺𝐺𝑇𝑇]𝜅𝜅𝑊𝑊 (weighted 738 

degree) and [𝐺𝐺𝑇𝑇]𝐶𝐶𝑛𝑛1  (closeness centrality normalised by |V|-1); (b) relationship between [𝐺𝐺𝑇𝑇]
𝐵𝐵𝑤𝑤
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑡𝑡𝑡𝑡  739 

(average weighted top-to-bottom edge betweenness centrality) and [𝐺𝐺𝑇𝑇]𝐿𝐿𝐶𝐶 (local clustering coefficient). 740 
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