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Abstract:  34 
Coordination number can be used to quantify the particle connectivity and deformability of 35 

a granular material. However, it is a local feature of particles at the microscale, and the use of 36 
an average coordination number does not allow for full characterization of the microstructural 37 
variation in the granular material. Mesoscale structures can be used to overcome this limitation: 38 
triangular-like structures at the mesoscale tend to be rigid, whereas square-like structures tend 39 
to be deformable. However, the effect of these structures on heat transfer has not been studied 40 
in deforming granular materials. A better understating of how microstructure variation affects 41 
effective thermal conductivity is necessary. This work constructs contact networks 42 
representing the granular materials with particles as nodes and linking neighbouring nodes with 43 
edges that represent particle contacts. Then, ‘3-cycles’ (i.e., a triangular structure) and 44 
‘clustering coefficients’ are extracted from the contact network. As contact thermal 45 
conductance is vital to heat transfer and affected by particle shape, microscale three-46 
dimensional particle shape descriptors are also calculated. To calculate the effective thermal 47 
conductivity of the granular assembly, a thermal network model is established by adding ‘near-48 
contact’ edges to the contact network and assigning a thermal conductance to each edge. The 49 
results show that mesoscale local clustering coefficients can indicate the rigidity of granular 50 
materials and, together with particle shape descriptors, can be used to well predict the effective 51 
thermal conductivity of granular materials under deformation. 52 

Keywords 53 
Heat transfer; Rigidity; Thermal network model; Microstructure; Deformation. 54 
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1 Introduction 56 
Compaction is one of the simplest ways to improve the ground bearing capacity. It also has 57 

the potential to enhance the heat transfer of the ground in shallow geothermal energy systems 58 
because the interparticle contact areas and the number of interparticle contacts may increase 59 
while pore spaces shrink during compaction. Heat transfer in any materials occurs because of 60 
conduction, convection and radiation. Since convection is important due to fluid currents [1] 61 
and radiation becomes significant when the temperature is greater than 1,000 K [2, 3], 62 
conduction usually contributes the most strongly to heat transfer in dry granular materials [1, 63 
4]. The heat conduction depends on the thermal conductivity of solid particles [1], the 64 
interparticle contact conductance [1, 5-9] and the structure of particle packings [2, 10]. As the 65 
rigidity/deformability of granular materials is related to their microstructures [11], a better 66 
understating of how the microstructure variation affects the effective thermal conductivity 67 
(𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒) is necessary. 68 

The coordination number has a strong relationship with mechanical stability [12] and the 69 
jamming transition [13, 14] in granular materials. However, the coordination number is a 70 
microscale variable describing the connection of an individual particle to others. The often-71 
used average coordination number cannot fully capture the spatial variation of the 72 
microstructure of granular materials. An order characteristic can also indicate the packing 73 
structure by measuring the rotational symmetry of particles [15]. However, it required complex 74 
calculation and was applied to sphere packings in the study. According to rigidity theory, a 75 
triangular structure tends to resist more deformation than a quadrilateral structure under an 76 
external loading (Fig. 1). However, the effect of interparticle triangular structures on 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 has 77 
not been studied in deforming granular materials.  78 

Complex network theory can quantify the structure of a complex system and it has been 79 
successfully applied to represent civil infrastructure systems [16-18]. As granular materials are 80 
also complex systems [19], complex network theory has also been used to investigate the 81 
mechanical behaviour [11, 20] and pore connectivity [21] in the granular materials. However, 82 
it has not been used to study heat transfer in granular materials. A granular material could be 83 
simplified as a contact network in which a node is assigned to each particle and an edge is 84 
created when two neighbouring particles are in contact. Various mesoscale structural features 85 
can be obtained by calculating the number of n-cycles using complex network theory [20]. A 86 
‘cycle’ is a loop that begins and ends at the same node, so 3-cylce is a triangle, 4-cycle is 87 
quadrangle and 5-cycle is pentagon. A 3-cycle is the smallest arrangement of particles formed 88 
by 3 neighbouring particles in contact [22]. These 3-cycle structures are more persistent and 89 
stable than n-cycle of higher orders (n>3) during deformation of granular materials [11]. 3-90 
cycles have a crucial role in rigidity because they can frustrate rotation and provide lateral 91 
support to surrounding particles even in three-dimensional (3D) analyses [23, 24]. Rivier 92 
(2006) showed that odd circuits (3-cycle is an odd circuit) are sufficient to ensure stability in 93 
3D [23]. Mesoscale clustering coefficients can also be extracted from the contact network to 94 
measure the density of 3-cycles (triangles). Compared with the coordination number, which 95 
only provides information on a single node, the mesoscale 3-cycle and clustering coefficients 96 
have the advantage of containing information about more than one node without comprising 97 
the entire network. Hence, investigating the relationship between mesoscale rigidity features 98 
and 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒  can potentially improve our knowledge of heat transfer in deforming granular 99 
materials.  100 

<Fig. 1 around here> 101 
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 102 
Fig. 1. In representing the structure of a granular material in the network, a triangular structure (a 103 

‘3-cycle’ in complex network theory) is rigid whereas a quadrilateral structure is deformable. 104 

In addition to the microstructure (rigidity) of the packings that can be characterized by the 105 
3-cycle or cluster coefficients, particle contact thermal conductance is also important in the 106 
overall heat conduction [25].  In dry materials, the contact conductance is believed to be 107 
affected by particle shape [26, 27], as particle shape affects both the contact number and contact 108 
area [1, 28]. Therefore, a three-dimensional particle shape descriptor is employed here to study 109 
the variation in 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒. 110 

To extract the ‘3-cycle’ and particle shape descriptors of granular materials, their internal 111 
microstructural information should be acquired. High-resolution X-ray computerized 112 
tomography (CT) techniques applied to granular materials can generate sequential CT images 113 
at a certain interval (resolution) [29-31]. Based on the images, the particle geometrical 114 
information and connectivity can be extracted using imaging postprocessing techniques. The 115 
geometry of the granular materials can also be reconstructed and numerical simulations can be 116 
undertaken to estimate their 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒. Finite element simulation (FEM) is an available method to 117 
compute the 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 but it is time-consuming because fine meshes are required to discretize the 118 
interparticle contacts and the interface between solid and pore phases. It usually overestimates 119 
𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 due to oversmoothing the interparticle contact areas [32, 33] and the lack of consideration 120 
of particle surface roughness [32]. Alternatively, network models [34-36] can discretely 121 
represent particle packings and calculate the heat transfer through interparticle contacts (real 122 
contacts) and small gaps between particles (near-contacts). However, very few thermal network 123 
models are available for nonsphere packings. The thermal conductance network model 124 
(TCNM)  [37] developed by our team extended the application to packings of irregular (i.e., 125 
nonspherical) particles.  126 

This article aims to find the relationship between the deformability of granular materials or 127 
rigidity and the 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 of granular materials using network techniques. Five granular materials 128 
with different particle shapes were scanned using CT techniques under different loadings. For 129 
each material at each level of compaction, four smaller subsamples were selected to (i) 130 
construct contact networks to calculate the number of mesoscale 3-cycle and clustering 131 
coefficients to characterize the rigidity of granular materials, (ii) construct thermal conductance 132 
network models (TCNMs) to calculate 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 , and (iii) compute the shape descriptors of 133 
individual particles. The 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 calculated from TCNMs were compared to those from FEM and 134 
experiments. Then, multiscale parameters were used to analyze the reasons underlying the 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 135 
variation in deforming materials.  136 

2 Materials 137 
Five granular materials were used in this work. The pictures in the upper row of Fig. 2  show 138 

that the selected materials have different particle shapes. The round glass beads were made of 139 
silica and have a silver coating. The Ottawa sand was sieved following ASTM standard C778 140 



5 
 

[38] to achieve particles retained between sieve No. 20 (0.60 mm) and No. 30 (0.85 mm). 141 
Particles in both Ottawa sand and Angular sand are mainly made of quartz, but the former are 142 
more rounded. Crushed schist A is made of chlorites and the particles in the packings are more 143 
irregular than the Angular sand. Crushed schist B has the most irregular particles, which consist 144 
of quartz and biotite [39]. Each material was air-pluviated into a cylindrical container with a 145 
diameter of 25 mm and a height of 25 mm. This container was equipped with a loading module 146 
designed by Afshar et al. [40]. The five materials were scanned under different axial loads 147 
corresponding to 0, 2, 6.1 and 10.2 MPa stress levels. The images shown in the bottom row of 148 
Fig. 2 are typical cross-section images of the five materials without loading (0 MPa). The 149 
voxels with a resolution of 13 μm in them present different grayscale that indicates the density 150 
of the mineral. The distinct grayscale in the voxels of the crushed schist CT image results from 151 
the corresponding different mineral components. Selecting the resolution of CT images is a 152 
trade-off between obtainning fewer grains with higher resolution and more grains with lower 153 
resolution. CT images with high resolution could better identify the partial contacts which may 154 
be wrongly recognized as a “complete or full contact” between particles [41] otherwise (at 155 
lower resolutions) and result in an overestimate [42] of interparticle contact area between 156 
irregular grains. The particle size of the five materials is summarized in Table 1. 157 

 158 
<Fig. 2 around here> 159 

 160 
Fig. 2. Five natural sands with different particle shapes. The pictures in the first row were 161 

photographed and the images in the second row were scanned with computed tomography.  162 

 163 
Table 1 Particle size characteristics of the selected granular materials 164 

Sample d50 (mm) Particle size range (mm) 

Glass beads 0.60 0.50 – 0.70 

Ottawa sand 0.73 0.60 – 0.85 

Angular sand 0.89 0.60 – 1.18 

Crushed schist rock A 0.84 0.50 – 1.18 

Crushed schist rock B 0.84 0.50 – 1.18 



6 
 

3 Methods 165 
3.1 Network construction 166 

Two types of networks are constructed in this work. Contact networks are constructed to 167 
acquire the 3-cycles and cluster coefficients using complex network theory. Thermal networks 168 
are extensions of the contact networks that also consider near-contacts as edges (Fig. 3) and it 169 
can be used to calculate the 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 by adding thermal conductance at the edges. 170 

As summarized in Fig. 3, a sequence of CT images with a representative element volume is 171 
cropped from the scanned sample and the image noise is decreased by using 3D Median filter 172 
in Step 1. These images are used to reconstruct the (3D) geometry in which the two phases 173 
(solid in black and pore in grey) are segmented with a common multilevel Otsu segmentation 174 
method [42-45] implemented in Fiji with automatic parameters selection [46] in Step 2. They 175 
do differ for each sample testedTo determine the location of each particle for constructing the 176 
networks, the watershed segmentation from MorphoLibJ [47] in Fiji is employed to split 177 
connected particles [48] in Step 3. Although Taylor et al. [49] found that the watershed 178 
segmentation with a 26 voxel neighbourhood can better capture the boundary of irregular 179 
particles, the results usually overestimate the surface (contact) area [50]. Therefore, a 6-voxel 180 
neighbourhood was used in this work because it has been shown to render satisfactory results 181 
[50].   182 

After the watershed segmentation, each particle is assigned a unique identifier (ID) and its 183 
centroid is calculated as the average coordinates of the voxels in the particle. To identify the 184 
real interparticle contact and near-contacts, the voxels in each particle are grouped as boundary 185 
voxels if they are adjacent to anything other than the voxels in the same particle. A subset of 186 
these boundary voxels is identified as interparticle contact voxels if they also border on another 187 
particle (and its corresponding boundary voxels). To efficiently identify the near-contacts, 188 
watershed segmentation is also applied to the void space (grayscale colours in Fig. 4-left) by 189 
first inverting the colour of phases and then following the same steps as with the solid phase 190 
watershed segmentation. The particle-pore connection (orange arrows) can be detected if the 191 
boundary voxels border on pore space. Then, the particle-pore-particle connections are 192 
identified as the location of potential near-contacts. Next, to determine the voxels that form 193 
part of a near-contact, cylinders representing gaps between particles or ‘gap’ cylinders are 194 
created for boundary voxels on a particle, as shown in Fig. 4-right, and their lengths Li

g are 195 
computed as the minimum distance to the boundary voxels on the neighbouring particle. 196 
Finally, the gap cylinder(s) will be considered to be in a near-contact if their respective lengths 197 
are shorter than a threshold ϵ. The threshold ϵ is selected as half of the mean particle radius 198 
after a calibration [37].    199 

 200 
< Fig. 3 around here> 201 

 202 
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 203 
Fig. 3. Procedures to construct a contact network and a thermal network. Contact edges are in red, 204 

near-contact edges are in blue. 205 

 206 
< Fig. 4 around here> 207 

 208 

 209 
Fig. 4. Identification of near-contacts. 𝜖𝜖  is the threshold length (𝐷𝐷50/4 in this case) for near-210 

contacts. 211 

3.2 Contact network features 212 

After constructing contact networks, three contact network features (3-cycle, local 213 
clustering coefficient and global clustering coefficient) are extracted as rigidity features to 214 
indicate the mesoscale structure of granular materials. N_3-cycles is calculated as the number 215 
of triangles in the contact network.  Local clustering coefficients [51] and global clustering 216 
coefficients [20] measure the density of triangles and can be computed using Equations 1 and 217 
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2, respectively. The local clustering coefficient, in particular, can quantify the fraction of 218 
possible triangles through each node. Clustering coefficients also indicate how fractured or 219 
integrated the contact network is. For instance, Fig. 5 (a) is a relatively fractured network that 220 
has a higher clustering coefficient than the network in Fig. 5 (b). 221 

 222 
 223 

 [𝐺𝐺𝐶𝐶]𝐿𝐿𝐶𝐶 (i) =  
2𝑇𝑇(𝑖𝑖)

𝑁𝑁(𝑖𝑖)(N(𝑖𝑖) − 1)
 (1) 

 224 
where T(i) is the number of triangles that pass node i, and N(i) is the degree of node i. 225 

 226 
 227 

 𝐺𝐺𝐶𝐶𝐺𝐺𝐶𝐶 = 3 ∙  
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑛𝑛𝑖𝑖𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐𝑡𝑡𝑛𝑛𝑐𝑐 𝑡𝑡𝑛𝑛𝑖𝑖𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡
 (2) 

where a triple is a group of three nodes that can contain either three edges (in a 3-cycle) or two 228 

edges. 229 

 230 
<Fig. 5 around here> 231 

 232 
Fig. 5. (a) A fractured network with a local clustering coefficient of 0.78 and global clustering 233 

coefficient of 0.5 (b) An integrated network with a local clustering coefficient of 0.47 and global 234 
clustering coefficient of 0.47. 235 

 236 
3.3 Thermal conductance network model 237 

3.3.1 Thermal conductance calculation  238 
The thermal conductance at the thermal network edges is required to calculate the effective 239 

thermal conductivity of granular materials [34]. For a cylinder with cross-sectional area A, 240 
length L and thermal conductivity 𝜆𝜆, its heat conductance C can be calculated as 𝐶𝐶 = 𝜆𝜆𝜆𝜆/𝐿𝐿. 241 
Hence, equivalent cylinders are used to represent the heat conductance in network edges.  These 242 
representations were proposed by Batchelor and O'brien [52] for randomly arranged sphere 243 
packings and then developed for more general assemblies, as validated by Yun and Evans [34] 244 
for spheres and Shapiro et al. [53] for powder packed beds. As heat conducts through solids, 245 
real interparticle contacts and near-contacts, three types of equivalent cylinders [37] are 246 
considered in this work and summarized in Fig. 6: (i) a particle cylinder with conductance 𝐶𝐶𝑝𝑝, 247 
(ii) a real interparticle contact cylinder 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and (iii) a near-contact cylinder 𝐶𝐶𝑔𝑔𝑐𝑐𝑝𝑝. The 248 
conductances through a ‘particle’ cylinder and interparticle contact cylinder can be computed 249 
using Equations 3 and 4, respectively, 250 
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 Cp = 𝜆𝜆𝑠𝑠
𝜆𝜆𝑝𝑝

𝐿𝐿𝑝𝑝
= 𝜆𝜆𝑠𝑠

𝜒𝜒𝑉𝑉𝑃𝑃/𝐿𝐿𝑃𝑃 
𝐿𝐿𝑃𝑃

  (3) 

where 𝜆𝜆𝑠𝑠 represents the thermal conductivity of the solid and the void phase. 𝐿𝐿𝑃𝑃 is the distance 251 
between the centroid of a particle and its corresponding contact. 𝐿𝐿𝑃𝑃 is equal to the particle 252 
radius for a spherical particle. The particle cylinder area 𝜆𝜆𝑃𝑃 is derived as 𝜒𝜒𝑉𝑉𝑃𝑃/𝐿𝐿𝑃𝑃. Here, 𝑉𝑉𝑃𝑃 is 253 
the particle volume and 𝜒𝜒 is a model coefficient that can be computed as 1/𝑁𝑁(𝑖𝑖) where 𝑁𝑁(𝑖𝑖) 254 
is the coordination number of particle i (i.e., the degree of node i in contact network).  255 
 256 

 C𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜆𝜆𝑠𝑠
𝜅𝜅𝜆𝜆𝐶𝐶

𝐿𝐿𝐶𝐶
= 𝜆𝜆𝑠𝑠

𝜅𝜅 ∑ 𝜆𝜆𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑣𝑣

𝑖𝑖,𝑗𝑗,𝑘𝑘   
3 𝐿𝐿𝑣𝑣

 (4) 

where 𝜆𝜆𝐶𝐶 is the interparticle contact area computed as the sum of the area of contact voxel 257 
∑ 𝜆𝜆(𝑖𝑖,𝑗𝑗,𝑘𝑘)

𝑣𝑣
𝑖𝑖,𝑗𝑗,𝑘𝑘  and Lv is the length of a voxel However, interparticle contact is essentially a 258 

combination of contact points because of the particle surface roughness [54]. The results of 259 
Askari et al. [54] show that a 25% overestimation of 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 may occur due to neglecting the 260 
roughness. Thus, 𝜅𝜅 is set as 0.75 in our work.  𝐿𝐿𝐶𝐶  is the length of the interparticle contact 261 
cylinder, assumed to be 3 ∙ 𝐿𝐿𝑣𝑣 [37] refer to the work of Bauer and Schlunder [55] that was 262 
validated by Shapiro et al. [53].  263 

Interparticle contact is usually over-smoothed during the threshold segmentation, as 264 
illustrated in Fig. 7, where the voxels partially filled with solid and void are incorrectly 265 
identified as a contact. The over-smoothing of the contact area results in a higher 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒  in 266 
simulation [32, 33]. Since the partially filled voxels have specific grayscales, a penalty 267 
coefficient 𝜏𝜏 [37] is introduced to correct the area of partially filled voxels as:  268 

 𝜆𝜆(𝑖𝑖,𝑗𝑗,𝑘𝑘)
𝑣𝑣 = �

𝑡𝑡(𝑖𝑖,𝑗𝑗,𝑘𝑘)

𝑡𝑡𝑚𝑚𝑐𝑐𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�

𝜏𝜏
𝐿𝐿𝑣𝑣2  (5) 

where 𝑡𝑡(𝑖𝑖,𝑗𝑗,𝑘𝑘) ∈ (0,255) is the gray value of each voxel (i, j, k) at the interparticle contact and 269 
the 𝑡𝑡𝑚𝑚𝑐𝑐𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the largest value among them. The power of 𝜏𝜏 is used to vary the severity of the 270 
penalty and is set as 10 [37] after calibrating the 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 of sphere packings using the results of 271 
an existing thermal network for sphere packings [34].   272 

Near-contact cylinders are generated based on the near-contacts identified in Fig. 4. Then, 273 
the conductance at near-contact cylinders 𝐶𝐶𝑔𝑔𝑐𝑐𝑝𝑝 can be calculated as: 274 

 C𝑔𝑔𝑐𝑐𝑝𝑝 = �𝐶𝐶𝑙𝑙
𝑔𝑔

𝑙𝑙

= 𝜆𝜆𝜈𝜈(𝐿𝐿 𝑣𝑣)2�
1
𝐿𝐿𝑙𝑙
𝑔𝑔

𝑙𝑙

 (6) 

where 𝜆𝜆𝑣𝑣 represents the thermal conductivity of the void phase and 𝐿𝐿𝑙𝑙
𝑔𝑔 is the length of the near-275 

contact cylinder. 276 
 277 

<Fig. 6 around here> 278 
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 279 
Fig. 6. Computation of thermal conductance in the thermal conductance network (TCNM). 280 

 281 
<Fig. 7 around here> 282 

 283 
Fig. 7. Over-smoothing of CT images after threshold segmentation: (a) Two discs with a 1-pixel 284 

gap; (b) a small gap in grayscale; (c) over-smoothing in the contact after threshold segmentation (after 285 
[42]). 286 

3.3.2 Effective thermal conductivity calculation 287 
To calculate the 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 of dry granular materials by solely considering heat conduction, the 288 

heat flux Qij of an edge connecting nodes i and j is solved by importing the computed thermal 289 
conductances to Fourier’s law (Equation 7) as part of the open-source Python library 290 
OpenPNM [56]. As this study focuses on the structure variation beyond the mineralogy, the 291 
thermal conductivity of the solid was fixed at 3 W/(m K)  [1, 34, 57] and the thermal 292 
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conductivity of the air filled in the void space is 0.025 W/(m K). The boundary temperatures 293 
at the top and bottom nodes are 293 K and 292 K, respectively. The heat flux is calculated as:  294 

 �𝑄𝑄𝑖𝑖𝑗𝑗
𝑖𝑖→𝑗𝑗

= �𝐶𝐶𝑖𝑖𝑗𝑗(𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑗𝑗)
𝑖𝑖→𝑗𝑗

 (7) 

 295 
where Cij is the conductance of the interparticle contact of the near-contact conductance and Ti 296 
and Tj are the temperatures at nodes i and j. 297 

After calculating the local heat flux Qij at each edge, the total heat flux in a typical cross-298 
sectional plane perpendicular to the heat transfer direction can be used in Equation 8 to compute 299 
the 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 of the sample. A simulation result by TCNM is shown in Fig. 8.   300 

 λeff =
1
𝜆𝜆∫ 𝑄𝑄𝑧𝑧 𝑐𝑐𝜆𝜆 𝐴𝐴

(𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑏𝑏)/𝐿𝐿
=  

1
𝜆𝜆∑𝑄𝑄𝑖𝑖𝑗𝑗  

(𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑏𝑏)/𝐿𝐿
 (8) 

 301 
<Fig. 8 around here> 302 

 303 

 304 
Fig. 8. TCNM simulation results showing the temperature of each node. From this network system, 305 

it is easy to see paths of heat transfer: interparticle contacts are shown in red and the near-contacts 306 
are blue. 307 

 308 
3.4 Finite element simulation and laboratory measurement 309 

To validate the heat transfer simulation by TCNM, finite element simulation and thermal 310 
needle testing were also used to measure the 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 of the granular materials.  311 
3.4.1 Finite element simulation 312 

We follow the framework introduced by Narsilio et al. [58] for fluid flow and its adaption 313 
for heat transfer at the particle scale [32, 37, 59]. For each sample, CT image stacks were 314 
imported to Simpleware ScanIP [60] to reconstruct the 3d microgeometry, segment the solid 315 
and void (Step 2 in Fig. 3), and generate meshes that are transferred to the finite element 316 
software COMSOL Multiphysics [61] for heat transfer simulation. Fig. 9 shows the mesh of 317 
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Ottawa sand, the mesh size and sample size were decided after a sensitivity analysis. The input 318 
thermal conductivity of air and solid grains are same as that in TCNM (solids at 3 W/(m K), 319 
air at 0.025 W/(m K)). Similar to the simulation process in TCNM, the local temperature is 320 
first calculated by solving the governing balance energy equations for a system with thermal 321 
insulation on all sides and a small temperature cdifferential between the top and bottom 322 
boundaries (Fig. 9). The local heat flux density Qz is estimated from the local temperature field 323 
using Fourier’s law. Finally, the integrated format 1

𝐴𝐴 ∫ 𝑄𝑄𝑧𝑧 𝑐𝑐𝜆𝜆 𝐴𝐴 in Equation 8 is used to determine 324 
the effective thermal conductivity of the sample. Additional details on this procedure can be 325 
found in papers [32, 37, 58]. 326 

 327 

 328 
Fig. 9. The finite elements and boundary condition used for simulating the heat transfer in Ottawa 329 

sand without loading. 330 

 331 
3.4.2 Laboratory measurement 332 

A 100-mm long thermal needle probe with a diameter of 2.4 mm was used to measure the 333 
𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 in the laboratory. The diameter of the needle was selected to be larger than the particle 334 
diameter to maximize the contacts between particles and the thermal needle probe.  The 335 
granular materials were air-pluviated into a PVC cylinder with a diameter of 50 mm and a 336 
height of 120 mm. We followed ASTM standard D5334-14 [62] to measure the thermal 337 
conductivity of the air-pluviated materials, achieving good accuracy at ±10%  for 0.2 −338 
4 W /(mK) [63]. 339 
3.5 Particle shape descriptors 340 

Sphericity (S) and roundness (R) are two indicators that describe particle shape and can be 341 
calculated using Equations 9 [47] and 10 [64], respectively.  342 

 𝑆𝑆 =  
36𝜋𝜋𝑉𝑉2

SA3  (9) 

where V is the particle volume and SA is the particle surface area. 343 

 𝑅𝑅 =  
∑𝑛𝑛𝑖𝑖/𝑁𝑁
𝑛𝑛𝑚𝑚𝑐𝑐𝑚𝑚−𝑖𝑖𝑐𝑐

 (10) 

where ri is the radius of a particle corner, N is the total number of corners and rmax−in is the 344 
radius of the maximum inscribed sphere in the particle. 345 
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To calculate the sphericity and roundness of each particle automatically based on CT 346 
images, an in-house program has been developed [28]. Since the connected particles were 347 
separated in Step 3 (Fig. 3), the individual particles can be extracted from the samples. The 348 
surface mesh of the extracted particles from CT images have tooth-saw patterns (Fig. 10), 349 
which may overestimate the particle volume and particle surface area, so the Taubin smoothing 350 
algorithm [65] is applied to achieve a smooth particle surface (Fig. 10). Since the smooth 351 
particle surface is composed of triangles, the sum of each triangle surface area is the particle 352 
surface area. Similarly, a tetrahedron is constructed for each triangle by considering the centre 353 
of the particle, and the sum of the volume of all the tetrahedrons is the particle volume.  354 

Identifying the corners in each particle is required and their radii are used to calculate the 355 
roundness using Equation 10. The maximum curvature of each vertex is first computed by 356 
quadratically fitting a microsurface using its ring adjacent vertices. Next, a quadratic 357 
polynomial equation can be obtained and the principal curvatures can be calculated by solving 358 
Hassian matrix [66] which created with coefficients in the equation. Then, corners are 359 
identified if the absolute value of the reciprocal of the curvature is smaller than 𝑛𝑛𝑚𝑚𝑐𝑐𝑚𝑚−𝑖𝑖𝑐𝑐, the 360 
radius of the maximum inscribed sphere in the particle, and the reciprocal is selected as the 361 
radius of the corner ri.  362 

 363 
<Fig. 10 around here> 364 

 365 
Fig. 10. The Taubin smoothing algorithm is used to transform the particles with a tooth-saw surface 366 

to a smooth surface. 367 

 368 

4 Results and discussion 369 
 370 

4.1 Effective thermal conductivity comparisons 371 

For each material shown in Fig. 2 under no pressure, four subsamples with a dimension of  372 
4.5 by 4.5 by 4.5 mm from random locations within the sample were selected to check the 373 
homogeneity of the sample. Their 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 were calculated by both FEM and TCNM, as shown in 374 
Fig. 11. Experimental measurements from the literature [32, 34] and our laboratory are also 375 
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included. The porosity of the experimental results is the mean value of the four subsamples in 376 
FEM and TCNM.   377 

 378 
<Fig. 11 around here> 379 

 380 
Fig. 11. The effective thermal conductivity calculated from TCNM compared with the finite element 381 

numerical and experimental results.  382 

Fig. 11 illustrates that the 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 from TCNM shows good agreement with the experimental 383 
results, despite a slight overestimation of 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒  for high-porosity samples. Woodside and 384 
Messmer [67] indicate that an underestimation may occur in the thermal needle test because of 385 
the imperfect contact between the needle and particles. Moreover, the mineralogy in the real 386 
materials is not considered in simulations. The effective thermal conductivity from TCNM 387 
shows a moderate decreasing rate with porosity. This observation is consistent with the results 388 
from papers [32, 34] that reported small decreases in effective thermal conductivity when 389 
porosity is increased without loading. In contrast, the 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 from FEM shows a much larger 390 
overestimation, which can be attributed to the oversmoothing of the interparticle contact area 391 
as shown in Fig. 7 since interparticle contact dominates the heat transfer in dry granular 392 
materials [1].  The FEM simulation also has limited ability to capture inter-particle contact 393 
surface roughness so that the actual point-to-point contacts in real imperfect particle-contacts 394 
are overestimated as flat face-to-face contacts [54, 68]. The overestimation of FEM is most 395 
obvious for samples with low porosity. For glass beads, the FEM value is almost three times 396 
the TCNM value. A higher porosity in granular materials usually means fewer interparticle 397 
contacts (coordination number in Fig. 12 (d)), resulting in the lower overestimation in FEM. 398 
Thus, FEM predicts the effective thermal conductivity more accurately in dense granular 399 
materials whereas TCNM may render accurate predictions for a wider range of materials. 400 

4.2 Variation of 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 under loading: a particle-scale analysis 401 

Another advantage of using TCNM to calculate 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀  is that the thermal conductances 402 
(Equations 4 and 6) between two particles can be readily computed at the microscale. Hence, 403 
the contribution of near-contact conductance (at the blue edges in Fig. 8) to the 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀of a 404 
sample can be distinguished in the overall calculations by computing the difference of 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀 405 
with and without near-contact conductance. Fig. 12 (a) shows the evolution of the average 406 
𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀 of the four subsamples of different materials under increasing loading. Round glass 407 
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beads show the largest 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀 compared with the 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀 of the most irregular crushed schist B, 408 
which consistently showed the lowest conductivity among the four materials. Fig. 12 (b) shows 409 
that the contribution of the near-contact conductance to the 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀 is the lowest in round glass 410 
beads and highest in the schist B. Surprisingly, the contribution of the near-contact conductance 411 
is approximately 40% in crushed schist B with no compression. Even for the dense irregular 412 
sand (rounder than crushed schist B) under 10 MPa, the contribution still accounts for 25%. 413 
The contribution will be higher with the increase of gas pressure in dry granular materials with 414 
low porosity due to Smoluchowski effect (gas thermal conductivity reduces with the decreasing 415 
pressure) [69, 70]. The high contribution of the near-contact conductance is related to the 416 
number of near-contacts. As show in Fig. 3, two kinds of edges are created in a thermal 417 
network; one type of edge only considers the pure near-contact and the other involves both 418 
interparticle contact and near-contact. Indeed, Fig. 12 (c) shows that the percentage of the pure 419 
near-contact in the materials under any loading is larger than 50%. A higher number of near-420 
contacts may indicate loose interparticle contacts. For instance, Angular sand has higher near-421 
contact count than Ottawa sand, in Fig. 12 (c), but less interparticle contacts (as shown by 422 
coordination number in Fig. 12 (d)). Notably, the Ottawa sand has fewer near-contacts and real 423 
interparticle contacts than glass beads. 424 

For the sensitivity of 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀  to the loading, the 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀  of the four materials increase 425 
substantially up to 2 MPa. During this loading period, the role of the near-contacts weakens in 426 
contrast with the higher contribution of interparticle contact number (coordination number) in 427 
Fig. 12 (d) and the interparticle contact quality (contact area) in Fig. 12 (e). When the load is 428 
increased, the 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀 remains steady for glass beads and slowly increases for Ottawa sand and 429 
angular sand. These trends are also observed in the variation of the coordination number but 430 
not in the change in the contact area. Hence, the interparticle contact number may be more 431 
important to heat transfer in granular materials than the near-contact and contact areas. 432 
Furthermore, the ordering of the materials in Fig. 11, Fig. 12 (a), Fig. 12 (b) and Fig. 12 (d) 433 
indicates that packings with more irregular particles could have higher porosity, lower 434 
interparticle contact [1, 71] and a resulting lower 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀 . The 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀  of crushed schist B 435 
reaches the same value as angular sand when the pressure is 6 MPa. The large increment of 436 
𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀 for crushed schist B is due to the particle breakage (Fig. 13), which isc indicated by the 437 
distinct decrease in its particle volume, shown in Fig. 12 (f). The earlier particle breakage in 438 
crushed schist B is because it contains a large proportion of biotite in the schist (Fig. 2) with 439 
lower Mohs hardness (2.5 - 3) than that of quartz (7) composing Ottawa sand [72]. Particles in 440 
crushed schist B with more irregular shape than the particles in Ottawa sand are more prone to 441 
breakage [73].   442 

 443 
<Fig. 12 around here> 444 

 445 
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 446 
Fig. 12. Contribution of the near-contact conductance to 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀 and microstructural analysis of the 447 

near-contact percentage, coordination number, contact area and particle volume. For the thermal 448 
conductivity, contribution of near-contact and near-contact percentage, the error bar shows the range 449 
of the average from four subsamples for each material. For others, the error bar shows the 95% 450 
confidence interval calculated on network nodes or edges of the combined set of the four subsamples. 451 

 452 
<Fig. 13 around here> 453 
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 454 
Fig. 13. Particle breakage in crushed schist B under 6 MPa. 455 

 456 
4.3 Variation in 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒under loading: Rigidity and a multi-scale analysis  457 

Although the variation in the coordination number in Fig. 12 (d) indicates the sensitivity of 458 
particle connectivity to compaction, the coordination number only describes the particle-scale 459 
rather than the mesoscale structure. Since particle connectivity changes due to the particle 460 
sedimentation and rotation during compression [40], N_3-cycles and clustering coefficients 461 
can make up for the disadvantage of using the coordination number to determine the change in 462 
the mesoscale structure and show the rigidity of the granular materials. We remind the readers 463 
that a 3-cycle is the smallest arrangement of particles formed by 3 neighbouring particles in 464 
contact, and that a higher count of 3-cycles structures than n-cycles (n>3) indicate higher 465 
rigidity of the overall assembly, i.e., a low count of 3-cycles indicates that the granular material 466 
is more deformable... Fig. 14 (a) shows that higher pressure results in a higher N_3-cycle 467 
number. The round glass beads have the most N_3-cycles among all materials at almost all 468 
levels of loading, which indicates that the regular particle packings are more rigid to the level 469 
of loading [74]. The continuously increasing number of N_3-cycles in crushed schist B is due 470 
to the decreasing particle volume, which means that the N_3-cycles reflect the particle 471 
breakage in Fig. 14 (b). The ordering of the global clustering coefficient for all materials at 472 
different levels is similar to that of N_3-cycles and its relationship with pressure in different 473 
materials become closer. Moreover, the local clustering coefficient in Fig. 14 (c) can almost 474 
unify the mesoscale structure change in the four granular materials under loading. Hence, it 475 
was used to further analyze the relationship between the rigidity and 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀 in dry granular 476 
materials. 477 

 478 
<Fig. 14 around here> 479 
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  480 
Fig. 14. Variation of mesoscale structural features under pressure. For N_3-cycles and global 481 

clustering coefficient, the error bar shows the range of the average from four subsamples for each 482 
material. For local clustering coefficient, the error bar shows the 95% confidence interval calculated 483 

on network nodes or edges of the combined set of the four subsamples. 484 

 485 
Fig. 15 (a) shows that samples with a higher local clustering coefficient have a high 486 

normalized 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀. Among the four materials, the range of the local clustering coefficient of 487 
round glass beads is narrow while that of the very irregular crushed schist sand is wide. Fig. 488 
11As the local clustering coefficient quantifies the percentage of possible triangles through a 489 
node, the different range of the local clustering coefficient may because of the different particle 490 
shape. The decreasing range of the local clustering coefficient from irregular crushed schist B 491 
to round granular materials also reveals that samples with a regular particle shape are more 492 
rigid to loading. A linear regression was also conducted to fit the relationship for each material. 493 
The fitted lines for the four materials have a similar slope, from 0.29 in angular sand to 0.37 in 494 
Ottawa sand, which indicates that local clustering coefficient as a rigidity feature can capture 495 
the similar impacts of deformation on heat transfer in different materials. The relationship 496 
between the traditional porosity and normalized thermal conductivity is shown in Fig. 15 (b). 497 
The 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀  decreases linearly for each sample. However, the decreasing rates exhibit 498 
differences of 0.40 in crushed schist B and 0.73 in Ottawa sand. As local clustering coefficient 499 
measures the density of triangles, a material with a larger local clustering coefficient means 500 
that it has more “triangles” and is denser. Hence the porosity reduces with the increase of local 501 
clustering coefficient as shown in Fig. 15 (c). 502 

 503 
<Fig. 15 around here> 504 

 505 

 506 
Fig. 15. The relationship between mesoscale local clustering coefficient, macroscale porosity and 507 

dimensionless 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀  calculated from TCNM. For thermal conductivity and porosity, the error bar 508 
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shows the range of the average from four subsamples for each material. For local clustering coefficient, 509 
the error bar shows the 95% confidence interval calculated on network nodes or edges of the combined 510 
set of the four subsamples. 511 

 512 
Since particle shape affects the contact conductance and the observed importance in Fig. 513 

15 (a), the average sphericity and roundness were employed to extend Fig. 15 (a) in three 514 
dimensions (Fig. 16 (a)). A plane also fits the relationship between the rigidity variable (local 515 
clustering coefficient), particle shape and 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀 . The results show that the correlation 516 
coefficient is high at 0.95, which indicates that a rigid structure variable with particle shape 517 
descritpors can be used to well predict the effective thermal conductivity of granular materials 518 
under deformation Although still high, the correlation coefficient decreases to 0.90 if the 519 
traditional porosity is considered as the controlling variable instead of the local clustering 520 
coefficient (Fig. 16 (b)). To show the robustness of TCNM and derived nonconventional 521 
features, the relationship between the two microstructural parameters and the 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹𝐹𝐹𝑀𝑀 calculated 522 
using FEM is depicted in Fig. 16 (c). After the linear regression, the correlation between them 523 
is lower, 0.81. The higher correlation coefficient in Fig. 16 (b) is because TCNM values are 524 
closer to the experimental results as shown in Fig. 11. 525 

  526 
<Fig. 16 around here> 527 

 528 

 529 
 530 

Fig. 16. The dimensionless 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀  shows a better relationship with particle shape and local 531 
clustering coefficient than with particle shape and porosity. (Click here to access the interactive 532 
graphs). 533 

5 Conclusions 534 
This work investigated the impact of microstructure variation on effective thermal 535 

conductivity. A thermal conductance network model (TCNM) was used to calculate the 536 
effective thermal conductivity 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 of granular materials based on CT images. By comparing 537 
the results with those from FEM and experimental measurements, the TCNM was found to be 538 
robust and without as much overestimation as FEM when calculating 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒. Since TCNM is 539 
derived from the thermal network by adding thermal conductance at network edges, it has 540 
another advantage over FEM in that the contribution of heat transfer from gaps and ‘near-541 

https://wenbinfei.github.io/research_demos/4-rigidity/
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contacts’ between particles can be identified. This work shows that this particular contribution 542 
is larger in irregular granular particles than in more rounded and regular particles at 543 
approximately 40% in crushed schist sand without loading. Additionally, three variables (3-544 
cycle, global clustering coefficient and local clustering coefficient) from the contact network 545 
indicate the variation of the mesoscale structures of the granular packings under compaction. 546 
Comparing their variation in all samples with the increasing loading indicates that the local 547 
clustering coefficient may be best suited to quantify the ‘rigidity’ of granular materials. To 548 
make up for the shortcoming of the mesoscale rigidity parameter, which does not have a direct 549 
relation with the contact conductance, a microscale particle shape descriptor was calculated for 550 
each particle in the granular materials. The local clustering and particle shape show higher 551 
correlations with 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 (with a coefficient of correlation as high as 0.95) than the traditional 552 
porosities of the materials. Hence, a mesoscale rigidity variable with microsalce particle shape 553 
descriptors can capture the underlying mechanisms. They can also describe and be used to well 554 
predict 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 in granular materials at a variety of confinements. 555 

Conflict of interest 556 
The authors declared that there is no conflict of interest. 557 

Acknowledgements 558 
This research was undertaken in the Imaging and Medical Beam Line (IMBL) at the 559 

Australian Synchrotron, Victoria, Australia. The authors would like to acknowledge Dr Anton 560 
Maksimenko and the other beam scientists at Australian Synchrotron for their support during 561 
our experiments. The authors also thank Dr Tabassm Afshar and Dr Xiuxiu Miao for their 562 
support in collecting the CT images. The first author thanks The University of Melbourne for 563 
offering the Melbourne Research Scholarship.  564 

 565 

References 566 
 567 

[1] T.S. Yun, J.C. Santamarina, Fundamental study of thermal conduction in dry soils, Granular matter, 568 
10(3) (2008) 197. 569 
[2] U. El Shamy, O. De Leon, R. Wells, Discrete element method study on effect of shear-induced 570 
anisotropy on thermal conductivity of granular soils, International Journal of Geomechanics, 13(1) 571 
(2013) 57-64. 572 
[3] Y. Asakuma, Y. Kanazawa, T. Yamamoto, Thermal radiation analysis of packed bed by a 573 
homogenization method, International Journal of Heat and Mass Transfer, 73 (2014) 97-102. 574 
[4] C. Argento, D. Bouvard, Thermal conductivity of granular media, Powders & grains,  (1993) 129-575 
134. 576 
[5] R. Askari, S.H. Hejazi, M. Sahimi, Thermal Conduction in Deforming Isotropic and Anisotropic 577 
Granular Porous Media with Rough Grain Surface, Transport in Porous Media, 124 (2018) 221-236. 578 
[6] B. Aduda, Effective thermal conductivity of loose particulate systems, Journal of materials science, 579 
31(24) (1996) 6441-6448. 580 
[7] M. Gangadhara Rao, D. Singh, A generalized relationship to estimate thermal resistivity of soils, 581 
Canadian Geotechnical Journal, 36(4) (1999) 767-773. 582 
[8] J. Côté, J.-M. Konrad, Thermal conductivity of base-course materials, Canadian Geotechnical 583 
Journal, 42(1) (2005) 61-78. 584 
[9] L. Fletcher, Recent developments in contact conductance heat transfer, Journal of Heat Transfer, 585 
110(4b) (1988) 1059-1070. 586 



21 
 

[10] Y. Hu, J. Wang, J. Yang, I. Mudawar, Q. Wang, Experimental study of forced convective heat 587 
transfer in grille-particle composite packed beds, International Journal of Heat and Mass Transfer, 129 588 
(2019) 103-112. 589 
[11] A. Tordesillas, Q. Lin, J. Zhang, R. Behringer, J. Shi, Structural stability and jamming of self-590 
organized cluster conformations in dense granular materials, Journal of the Mechanics and Physics of 591 
Solids, 59(2) (2011) 265-296. 592 
[12] L. Papadopoulos, M.A. Porter, K.E. Daniels, D.S. Bassett, Network analysis of particles and grains, 593 
Journal of Complex Networks, 6(4) (2018) 485-565. 594 
[13] J. Scott, Social network analysis, Sociology, 22(1) (1988) 109-127. 595 
[14] A.J. Liu, S.R. Nagel, W. Van Saarloos, M. Wyart, The jamming scenario-an introduction and 596 
outlook, in:  Dynamical heterogeneities in glasses, colloids, and granular media, Oxford University 597 
Press, 2011. 598 
[15] W. Dai, D. Hanaor, Y. Gan, The effects of packing structure on the effective thermal conductivity 599 
of granular media: A grain scale investigation, International Journal of Thermal Sciences, 142 (2019) 600 
266-279. 601 
[16] G. Fu, S. Wilkinson, R.J. Dawson, A spatial network model for civil infrastructure system 602 
development, Computer‐Aided Civil and Infrastructure Engineering, 31(9) (2016) 661-680. 603 
[17] S. Argyroudis, J. Selva, P. Gehl, K. Pitilakis, Systemic seismic risk assessment of road networks 604 
considering interactions with the built environment, Computer‐Aided Civil and Infrastructure 605 
Engineering, 30(7) (2015) 524-540. 606 
[18] A. Bozza, D. Asprone, F. Parisi, G. Manfredi, Alternative resilience indices for city ecosystems 607 
subjected to natural hazards, Computer‐Aided Civil and Infrastructure Engineering, 32(7) (2017) 527-608 
545. 609 
[19] H.M. Jaeger, T. Shinbrot, P.B. Umbanhowar, Does the granular matter?, Proceedings of the 610 
National Academy of Sciences, 97(24) (2000) 12959-12960. 611 
[20] M.E. Newman, The structure and function of complex networks, SIAM review, 45(2) (2003) 167-612 
256. 613 
[21] J.H. van der Linden, G.A. Narsilio, A. Tordesillas, Machine learning framework for analysis of 614 
transport through complex networks in porous, granular media: a focus on permeability, Physical 615 
Review E, 94(2) (2016) 022904. 616 
[22] A.G. Smart, J.M. Ottino, Evolving loop structure in gradually tilted two-dimensional granular 617 
packings, Physical Review E, 77(4) (2008) 041307. 618 
[23] N. Rivier, Extended constraints, arches and soft modes in granular materials, Journal of non-619 
crystalline solids, 352(42-49) (2006) 4505-4508. 620 
[24] R.M. Baram, H. Herrmann, N. Rivier, Space-filling bearings in three dimensions, Physical review 621 
letters, 92(4) (2004) 044301. 622 
[25] J. Kim, Y.-R. Goo, I. Choi, S. Kim, D. Lee, Toward high-accuracy and high-applicability of a 623 
practical model to predict effective thermal conductivity of particle-reinforced composites, 624 
International Journal of Heat and Mass Transfer, 131 (2019) 863-872. 625 
[26] A.M. Abyzov, A.V. Goryunov, F.M. Shakhov, Effective thermal conductivity of disperse 626 
materials. I. Compliance of common models with experimental data, International Journal of Heat and 627 
Mass Transfer, 67 (2013) 752-767. 628 
[27] F. Liu, Y. Cai, L. Wang, J. Zhao, Effects of nanoparticle shapes on laminar forced convective heat 629 
transfer in curved ducts using two-phase model, International Journal of Heat and Mass Transfer, 116 630 
(2018) 292-305. 631 
[28] W. Fei, G. Narsilio, M. Disfani, Impact of three-dimensional sphericity and roundness on heat 632 
transfer in granular materials  (Under review), Powder Technology,  (2019). 633 
[29] A. Abbas, M.E. Kutay, H. Azari, R. Rasmussen, Three ‐ dimensional surface texture 634 
characterization of Portland cement concrete pavements, Computer‐Aided Civil and Infrastructure 635 
Engineering, 22(3) (2007) 197-209. 636 
[30] M.E. Kutay, A.H. Aydilek, Pore pressure and viscous shear stress distribution due to water flow 637 
within asphalt pore structure, Computer‐Aided Civil and Infrastructure Engineering, 24(3) (2009) 638 
212-224. 639 



22 
 

[31] M.R. Khelifa, S. Guessasma, New computational model based on finite element method to quantify 640 
damage evolution due to external sulfate attack on self‐compacting concretes, Computer‐Aided Civil 641 
and Infrastructure Engineering, 28(4) (2013) 260-272. 642 
[32] G.A. Narsilio, J. Kress, T.S. Yun, Characterisation of conduction phenomena in soils at the particle-643 
scale: Finite element analyses in conjunction with synthetic 3D imaging, Computers and Geotechnics, 644 
37(7) (2010) 828-836. 645 
[33] L. Miettinen, P. Kekäläinen, T. Turpeinen, J. Hyväluoma, J. Merikoski, J. Timonen, Dependence 646 
of thermal conductivity on structural parameters in porous samples, AIP Advances, 2(1) (2012) 012101. 647 
[34] T.S. Yun, T.M. Evans, Three-dimensional random network model for thermal conductivity in 648 
particulate materials, Computers and Geotechnics, 37(7) (2010) 991-998. 649 
[35] R.K. Desu, A.R. Peeketi, R.K. Annabattula, Artificial neural network-based prediction of effective 650 
thermal conductivity of a granular bed in a gaseous environment, Computational Particle Mechanics, 651 
6(3) (2019) 503-514. 652 
[36] O. Birkholz, Y. Gan, M. Kamlah, Modeling the effective conductivity of the solid and the pore 653 
phase in granular materials using resistor networks, Powder Technology, 351 (2019) 54-65. 654 
[37] J.H. van der Linden, G. Narsilio, A. Tordesillas, Thermal conductance network model for 655 
computerised tomography images of real geomaterials (Under review), Computers and Geotechnics,  656 
(2019). 657 
[38] ASTM, C778-17 standard specification for standard sand, ASTM International, West 658 
Conshohocken, PA,  (2017). 659 
[39] A. VandenBerg, The Tasman Fold Belt system in Victoria: geology and mineralisation of 660 
Proterozoic to Carboniferous rocks, Geological Survey of Victoria, 2000. 661 
[40] T. Afshar, M. Disfani, G. Narsilio, A. Arulrajah, Changes to Grain Properties due to Breakage in 662 
a Sand Assembly using Synchrotron Tomography, in:  EPJ Web of Conferences, EDP Sciences, 2017, 663 
pp. 07004. 664 
[41] B. Persson, O. Albohr, U. Tartaglino, A. Volokitin, E. Tosatti, On the nature of surface roughness 665 
with application to contact mechanics, sealing, rubber friction and adhesion, Journal of physics: 666 
Condensed matter, 17(1) (2004) R1. 667 
[42] M. Wiebicke, E. Andò, I. Herle, G. Viggiani, On the metrology of interparticle contacts in sand 668 
from x-ray tomography images, Measurement Science and Technology, 28(12) (2017) 124007. 669 
[43] N. Otsu, A threshold selection method from gray-level histograms, IEEE transactions on systems, 670 
man, and cybernetics, 9(1) (1979) 62-66. 671 
[44] S. Schlüter, A. Sheppard, K. Brown, D. Wildenschild, Image processing of multiphase images 672 
obtained via X‐ray microtomography: a review, Water Resources Research, 50(4) (2014) 3615-3639. 673 
[45] Z. Karatza, E. Andò, S. Papanicolopulos, J. Ooi, G. Viggiani, Evolution of deformation and 674 
breakage in sand studied using X-ray tomography, Géotechnique, 1 (2018) 1-11. 675 
[46] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. 676 
Rueden, S. Saalfeld, B. Schmid, Fiji: an open-source platform for biological-image analysis, Nature 677 
methods, 9(7) (2012) 676. 678 
[47] D. Legland, I. Arganda-Carreras, P. Andrey, MorphoLibJ: integrated library and plugins for 679 
mathematical morphology with ImageJ, Bioinformatics, 32(22) (2016) 3532-3534. 680 
[48] H. Kim, C.T. Haas, A.F. Rauch, C. Browne, 3D image segmentation of aggregates from laser 681 
profiling, Computer‐Aided Civil and Infrastructure Engineering, 18(4) (2003) 254-263. 682 
[49] H. Taylor, C. O’Sullivan, W. Sim, A new method to identify void constrictions in micro-CT images 683 
of sand, Computers and Geotechnics, 69 (2015) 279-290. 684 
[50] J. Fonseca, C. O’Sullivan, M.R. Coop, P. Lee, Non-invasive characterization of particle 685 
morphology of natural sands, Soils and Foundations, 52(4) (2012) 712-722. 686 
[51] D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’networks, nature, 393(6684) 687 
(1998) 440. 688 
[52] G.K. Batchelor, R. O'brien, Thermal or electrical conduction through a granular material, Proc. R. 689 
Soc. Lond. A, 355(1682) (1977) 313-333. 690 
[53] M. Shapiro, V. Dudko, V. Royzen, Y. Krichevets, S. Lekhtmakher, V. Grozubinsky, M. Shapira, 691 
M. Brill, Characterization of Powder Beds by Thermal Conductivity: Effect of Gas Pressure on the 692 



23 
 

Thermal Resistance of Particle Contact Points, Particle & Particle Systems Characterization, 21(4) 693 
(2004) 268-275. 694 
[54] R. Askari, S. Taheri, S.H. Hejazi, Thermal conductivity of granular porous media: A pore scale 695 
modeling approach, AIP Advances, 5(9) (2015). 696 
[55] R. Bauer, E. Schlunder, Effective radial thermal-conductivity of packings in gas flow, part -ii: 697 
Thermal conductivity of packing fraction without gas flow, International Chemical Engineering, 18(2) 698 
(1978) 189-204. 699 
[56] J.T. Gostick, Versatile and efficient pore network extraction method using marker-based watershed 700 
segmentation, Physical Review E, 96(2) (2017) 023307. 701 
[57] J. Sundberg, P.-E. Back, L.O. Ericsson, J. Wrafter, Estimation of thermal conductivity and its 702 
spatial variability in igneous rocks from in situ density logging, International Journal of Rock 703 
Mechanics and Mining Sciences, 46(6) (2009) 1023-1028. 704 
[58] G.A. Narsilio, O. Buzzi, S. Fityus, T.S. Yun, D.W. Smith, Upscaling of Navier–Stokes equations 705 
in porous media: Theoretical, numerical and experimental approach, Computers and Geotechnics, 36(7) 706 
(2009) 1200-1206. 707 
[59] G. Narsilio, T. Yun, J. Kress, T. Evans, Hydraulic and thermal conduction phenomena in soils at 708 
the particle-scale: Towards realistic FEM simulations, in:  IOP Conference Series: Materials Science 709 
and Engineering, IOP Publishing, 2010, pp. 012086. 710 
[60] Simpleware Ltd., Simpleware ScanIP, http://www.simpleware.com/software/scanip, Date of 711 
access, 15 (2015) 12. 712 
[61] COMSOL AB, COMSOL multiphysics v5.0, http://www.comsol.com,  (2015). 713 
[62] ASTM D5334-14, Standard Test Method for Determination of Thermal Conductivity of Soil and 714 
Soft Rock by Thermal Needle Probe Procedure, in, ASTM International, West Conshohocken, PA, 715 
2014. 716 
[63] T. Brandon, J. Mitchell, Factors influencing thermal resistivity of sands, Journal of Geotechnical 717 
Engineering, 115(12) (1990) 1683-1698. 718 
[64] H. Wadell, Volume, shape, and roundness of rock particles, The Journal of Geology, 40(5) (1932) 719 
443-451. 720 
[65] G. Taubin, Curve and surface smoothing without shrinkage, in:  Computer Vision, 1995. 721 
Proceedings., Fifth International Conference on, IEEE, 1995, pp. 852-857. 722 
[66] B. Zhou, J. Wang, H. Wang, Three-dimensional sphericity, roundness and fractal dimension of 723 
sand particles, Géotechnique, 68(1) (2017) 18-30. 724 
[67] W. Woodside, J. Messmer, Thermal conductivity of porous media. I. Unconsolidated sands, 725 
Journal of applied physics, 32(9) (1961) 1688-1699. 726 
[68] G. Narsilio, T.S. Yun, J. Kress, T. Evans, Hydraulic and thermal conduction phenomena in soils at 727 
the particle-scale: Towards realistic FEM simulations, in:  IOP Conference Series: Materials Science 728 
and Engineering, IOP Publishing, 2010, pp. 012086. 729 
[69] M. Moscardini, Y. Gan, S. Pupeschi, M. Kamlah, Discrete element method for effective thermal 730 
conductivity of packed pebbles accounting for the Smoluchowski effect, Fusion Engineering and 731 
Design, 127 (2018) 192-201. 732 
[70] W. Dai, S. Pupeschi, D. Hanaor, Y. Gan, Influence of gas pressure on the effective thermal 733 
conductivity of ceramic breeder pebble beds, Fusion Engineering and Design, 118 (2017) 45-51. 734 
[71] J. Choo, Y.J. Kim, J.H. Lee, T.S. Yun, J. Lee, Y.S. Kim, Stress-induced evolution of anisotropic 735 
thermal conductivity of dry granular materials, Acta Geotechnica, 8(1) (2013) 91-106. 736 
[72] J.W. Anthony, R.A. Bideaux, K.W. Bladh, M.C. Nichols, Handbook of mineralogy, Mineral Data 737 
Publ. Tucson, 1990. 738 
[73] D. Wei, B. Zhao, D. Dias-da-Costa, Y. Gan, An FDEM study of particle breakage under rotational 739 
point loading, Engineering Fracture Mechanics,  (2019). 740 
[74] G.-C. Cho, J. Dodds, J.C. Santamarina, Particle shape effects on packing density, stiffness, and 741 
strength: natural and crushed sands, Journal of geotechnical and geoenvironmental engineering, 132(5) 742 
(2006) 591-602. 743 
 744 

  745 

http://www.simpleware.com/software/scanip
http://www.comsol.com/


24 
 

List of Tables 746 
Table 1 Particle size characteristics of the selected granular materials 747 

  748 



25 
 

List of Figures 749 
 750 
Fig. 1. In representing the structure of a granular material in the network, a triangular 751 

structure (a ‘3-cycle’ in complex network theory) is rigid whereas a quadrilateral structure is 752 
deformable. 753 

Fig. 2. Five natural sands with different particle shapes. The pictures in the first row were 754 
photographed and the images in the second row were scanned with computed tomography. 755 

Fig. 3. Procedures to construct a contact network and a thermal network. Contact edges are 756 
in red, near-contact edges are in blue. 757 

Fig. 4. Identification of near-contacts. 𝜖𝜖 is the threshold length (𝐷𝐷50/4  in this case) for near-758 
contacts. 759 

Fig. 5. (a) A fractured network with a local clustering coefficient of 0.78 and global 760 
clustering coefficient of 0.5 (b) An integrated network with a local clustering coefficient of 761 
0.47 and global clustering coefficient of 0.47. 762 

Fig. 6. Computation of thermal conductance in the thermal conductance network (TCNM). 763 
Fig. 7. Over-smoothing of CT images after threshold segmentation: (a) Two discs with a 1-764 

pixel gap; (b) a small gap in grayscale; (c) over-smoothing in the contact after threshold 765 
segmentation (after [42]). 766 

Fig. 8. TCNM simulation results showing the temperature of each node. From this network 767 
system, it is easy to see paths of heat transfer: interparticle contacts are shown in red and the 768 
near-contacts are blue. 769 

Fig. 9. The finite elements and boundary condition used for simulating the heat transfer in 770 
Ottawa sand without loading. 771 

Fig. 10. The Taubin smoothing algorithm is used to transform the particles with a tooth-saw 772 
surface to a smooth surface. 773 

Fig. 11. The effective thermal conductivity calculated from TCNM compared with the finite 774 
element numerical and experimental results. 775 

Fig. 12. Contribution of the near-contact conductance to 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀 and microstructural analysis 776 
of the near-contact percentage, coordination number, contact area and particle volume. For the 777 
thermal conductivity, contribution of near-contact and near-contact percentage, the error bar 778 
shows the range of the average from four subsamples for each material. For others, the error 779 
bar shows the 95% confidence interval calculated on network nodes or edges of the combined 780 
set of the four subsamples. 781 

Fig. 13. Particle breakage in crushed schist B under 6 MPa.  782 
Fig. 14. Variation of mesoscale structural features under pressure. For N_3-cycles and 783 

global clustering coefficient, the error bar shows the range of the average from four subsamples 784 
for each material. For local clustering coefficient, the error bar shows the 95% confidence 785 
interval calculated on network nodes or edges of the combined set of the four subsamples. 786 

Fig. 15. The relationship between mesoscale local clustering coefficient, macroscale 787 
porosity and dimensionless 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀  calculated from TCNM. For thermal conductivity and 788 
porosity, the error bar shows the range of the average from four subsamples for each material. 789 
For local clustering coefficient, the error bar shows the 95% confidence interval calculated on 790 
network nodes or edges of the combined set of the four subsamples. 791 

Fig. 16. The dimensionless 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝐶𝐶𝑁𝑁𝑀𝑀 shows a better relationship with particle shape and local 792 
clustering coefficient than with particle shape and porosity. (Click here to access the interactive 793 
graphs). 794 
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