19/11/2018

Regularization of Linear Models with SKLearn — Coinmonks — Medium

LE

Robert John
Jul12 - 3 min read

Regularization of Linear Models
with SKLearn

An overfit model

Linear models are usually a good starting point for training a model.

However, a lot of datasets do not exhibit linear relationships between
the independent and the dependent variables. As a result, it is

frequently necessary to create a polynomial model. However, these

models are usually prone to overfitting. One method of reducing

overfitting in polynomial models is through the use of regularization.

Let’s start by building a baseline model to determine the required

improvement. We will make use of the popular Boston Housing dataset
which is available on Kaggle here.

Let’s import the necessary libraries and load up our training dataset.

https://medium.com/coinmonks/regularization-of-linear-models-with-sklearn-f88633a93a2

17

19/11/2018

Regularization of Linear Models with SKLearn — Coinmonks — Medium

#imports

import numpy as np

import pandas as pd

import math

from

from
from
from
from

from

from
from

from

sklearn

sklearn.
sklearn.
sklearn.

sklearn.

sklearn

sklearn

sklearn.

sklearn.

.model_selection import train_test_split

linear_model import LinearRegression
linear_model import Ridge
linear_model import Lasso

linear_model import ElasticNet

.metrics import mean_squared_error

.preprocessing import PolynomialFeatures

pipeline import Pipeline

preprocessing import StandardScaler

import matplotlib.pyplot as plt

import seaborn as sns

Let’s split our data into a training set and a validation set. We will hold

out 30% of the data for validation. We will use a random state to make

our experiment reproducible.

#create our X and y

X = train_df.drop('medv', axis=1)

y

train_df['medv"']

Let’s establish a baseline by training a linear regression model.

https://medium.com/coinmonks/regularization-of-linear-models-with-sklearn-f88633a93a2

217

19/11/2018

Regularization of Linear Models with SKLearn — Coinmonks — Medium

1r_model = LinearRegression()

1r_model.fit(X_train, y train)

print('Training score: {}'.format(lr_model.score(X_train,

print('Test score: {}'.format(lr_model.score(X_ test, y tes

y _pred = 1lr_model.predict(X test)

mse = mean_squared_error(y_test, y_pred)

The model above should give us a training accuracy and a test accuracy
of about 72%. We should also get an RMSE of about 4.587. The next
models we train should outperform this model with higher accuracy

scores and a lower RMSE.

We need to engineer new features. Specifically, we need to create
polynomial features by taking our individual features and raising them
to a chosen power. Thankfully, scikit-learn has an implementation for

this and we don’t need to do it manually.

Something else we would like to do is standardize our data. This scales
our data down to a range between 0 and 1. This serves the purpose of
letting us work with reasonable numbers when we raise to a power.

Finally, because we need to carry out the same operations on our
training, validation, and test sets, we will introduce a pipeline. This will
let us pipe our process so the same steps get carried out repeatedly.

To summarize, we will scale our data, then create polynomial features,
and then train a linear regression model.

steps = [
('scalar', StandardScaler()),
('poly', PolynomialFeatures(degree=2)),

('model', LinearRegression())

pipeline = Pipeline(steps)

mAinATdnA L34+/V +nnadn D Nt oA

https://medium.com/coinmonks/regularization-of-linear-models-with-sklearn-f88633a93a2

3/7

19/11/2018 Regularization of Linear Models with SKLearn — Coinmonks — Medium

After running our code, we will get a training accuracy of about
94.75%, and a test accuracy of 46.76%. This is a sign of overfitting. It’s
normally not a desirable feature, but that is exactly what we were
hoping for.

We will now apply regularization to our new data.

|2 Regularization or Ridge Regression

To understand Ridge Regression, we need to remind ourselves of what
happens during gradient descent, when our model coefficients are
trained. During training, our initial weights are updated according to a
gradient update rule using a learning rate and a gradient. Ridge
regression adds a penalty to the update, and as a result shrinks the size
of our weights. This is implemented in scikit-learn as a class called
Ridge.

We will create a new pipeline, this time using Ridge. We will specify our
regularization strength by passing in a parameter, alpha. This can be
really small, like 0.1, or as large as you would want it to be. The larger

the value of alpha, the less variance your model will exhibit.

steps = [
('scalar', StandardScaler()),
("poly', PolynomialFeatures(degree=2)),
('model', Ridge(alpha=10, fit_intercept=True))

ridge_pipe = Pipeline(steps)
ridge pipe.fit(X_train, y_train)

By executing the code, we should have a training accuracy of about
91.8%, and a test accuracy of about 82.87%. That is an improvement
on our baseline linear regression model.

Let’s try something else.

I1 Regularization or Lasso Regression

https://medium.com/coinmonks/regularization-of-linear-models-with-sklearn-f88633a93a2 4/7

19/11/2018

Regularization of Linear Models with SKLearn — Coinmonks — Medium

By creating a polynomial model, we created additional features. The
question we need to ask ourselves is which of our features are relevant

to our model, and which are not.

11 regularization tries to answer this question by driving the values of
certain coefficients down to 0. This eliminates the least important
features in our model. We will create a pipeline similar to the one
above, but using Lasso. You can play around with the value of alpha,

which can range from 0.1 to 1.

steps = [
('scalar', StandardScaler()),
('poly', PolynomialFeatures(degree=2)),
('model', Lasso(alpha=0.3, fit intercept=True))

lasso_pipe = Pipeline(steps)

Tarra ninA L34+/V +inndn I R Y

The code above should give us a training accuracy of 84.8%, and a test
accuracy of 83%. This is an even better model than the one we trained

earlier.

At this point, you can evaluate your model by finding the RMSE. Don’t
forget to read the documentation for everything we used.

I hope you found this tutorial useful. Until next time.

https://medium.com/coinmonks/regularization-of-linear-models-with-sklearn-f88633a93a2

5/7

19/11/2018 Regularization of Linear Models with SKLearn — Coinmonks — Medium

https://medium.com/coinmonks/regularization-of-linear-models-with-sklearn-f88633a93a2 6/7

19/11/2018 Regularization of Linear Models with SKLearn — Coinmonks — Medium

https://medium.com/coinmonks/regularization-of-linear-models-with-sklearn-f88633a93a2 717

